
Seoul National University
Graduate School of Data Science

PointSplit: Towards On-device 3D Object Detection
with Heterogeneous Low-power Accelerators

Presented by Keondo Park

You Rim Choi, Inhoe Lee, Hyung-Sin Kim

May 10, 2023

I P S N 2 0 2 3

CPU

GPUNPU

On-device machine learning Mobile heterogeneous processors

POTENTIAL to run more complex task?

Our Target Task

Indoor scene

RGB-D
camera

On-device 3D Object detection

3D

2D Chair

Table

Edge devices

Grouping

SamplingNN

Heavy /
Heterogeneous

Workload!

GPUNPU

P
re

d
ic

te
d

 K
 b

o
xe

s

Baseline: 3D Object Detector
P

o
in

t
cl

o
u

d
 in

p
u

t
(N

3

)

Se
ed

 p
o

in
ts

(M

(3
 +

 C
)

Detecting
Head

3D Detector
PointNet++

PointNet++
(Feature learning

backbone)

Input
Point Cloud

PointNet PointNet

FPS
(Farthest point sampling)

Ball query FPS /Ball query

Point manipulation

…

Point manipulation

Baseline: 2D + 3D Fusion

RGB Image Segmentation results

Painted point cloud

Semantic
Segmentation
(Deeplabv3+)

2D-3D projection

Point cloud

2D

3D

PointPainting

3D object
detector

Which Job to Which Processor?

GPUNPU

Features
• Slower NN inference
• Wide coverage of operations

• Very fast NN inference
• Limited to NN operations

Processor

PointPainting (NN) Point manipulation
(FPS, Ball query) PointNet (NN)

Jobs

Challenge: Naïve Combination
• PointPainting and PoinetNet++ on GPU and NPU

Long idle time!

System - Algorithm Co-optimization?

Challenge: Quantization

0

10

20

30

40

50

60

VoteNet (FP32) VoteNet (INT8)

m
A

P
@

 0
.2

5

• Memory ↓ Speed ↑
• Marginal accuracy drop
• Required for ASIC

(e.g. EdgeTPU)

…

…

0 1 2 255254253

𝒓𝒎𝒊𝒏 𝒓𝒎𝒂𝒙

FP32

INT8

Clipping range

Significant model performance drop…

Why?

PointSplit

1. System - Algorithm joint optimization
• Biased farthest point sampling

• Parallelizable feature extractor

Low utilization of system under naïve combination

GPU/NPU Parallelization (Naïve Approach)

Painted
point cloud

Sample M/2 points

Sample M/2 points

Can be executed concurrently

Sample M points

GPU/NPU Parallelization (Naïve Approach)

PointPainting

Point manipulation
(FPS, Ball query)

Point manipulation
(FPS, Ball query)

Point manipulation
(FPS, Ball query)

Point manipulation
(FPS, Ball query)

PointNet++

Semantic Segmentation
(Deeplabv3+) Painted point cloud

Busy

BusyIdle

Busy

Busy

Busy

Busy

Busy

Still idle time!

Two similar pointsets
Any better option?

Farthest Point Sampling

1

2

Farthest point is sampled

3

4

5

Per each point, minimum of
distance from already sampled

points is calculated

Farthest point is sampled

• Base sampling technique in PointNet++.

Biased Farthest Point Sampling

1

2
3

4

5

Farther distance if painted

• Biased towards painted points using foreground boundary!

Comparison of Sampling Techniques

Input painted
point cloud

Normal FPS (𝒘𝟎 = 𝟏) Biased FPS (𝒘𝟎 = 𝟏𝟎)

Complementary point sets

Augmentation during training

Reminder: Naïve Combination
• PointPainting and PoinetNet++ on GPU and NPU

Long idle time!

Parallelizable Feature Extractor
• Runtime schedule of PointSplit on GPU and NPU

Reduced idle time and Higher utilization!

Parallelization!

PointSplit
1. System - Algorithm joint optimization

• Biased farthest point sampling

• Parallelizable feature extractor

2. Role-based groupwise quantization

Large quant. errors without quant. granularity consideration

Large Quantization Errors in tflite

NN Layer m

tflite - Layerwise Quantization

INT8

Clipping range

NN Layer m-1

NN Layer m+1

𝒓𝒎𝒊𝒏
𝒓𝒎𝒂𝒙

…
…

0

10

20

30

40

50

60

VoteNet (FP32) VoteNet (INT8)

m
A

P
@

 0
.2

5

Significant model
performance drop!

Large Quantization Errors in tflite

NN Layer m

NN Layer m-1

NN Layer m+1

…
…

…

Clipping range

Channel 1

Channel 2

Channel N-1

Channel N

…

INT8

INT8

INT8

INT8

Difference in distribution by Channels!

𝒓𝒎𝒊𝒏 𝒓𝒎𝒂𝒙

Channelwise Quantization?

NN Layer m

NN Layer m-1

NN Layer m+1

…
…

…

Clipping range

Channel 1

Channel 2

Channel N-1

Channel N

…

INT8

INT8

INT8

INT8

Clipping range

Clipping range

Clipping range

𝒓𝒎𝒊𝒏
𝟏 𝒓𝒎𝒂𝒙

𝟏

𝒓𝒎𝒊𝒏
𝟐 𝒓𝒎𝒂𝒙

𝟐

𝒓𝒎𝒊𝒏
𝑵−𝟏 𝒓𝒎𝒂𝒙

𝑵−𝟏

𝒓𝒎𝒊𝒏
𝑵 𝒓𝒎𝒂𝒙

𝑵

Quant. errors ↓
Quant. parameters ↑ ↑

Any room for optimization?

Role-Group Roles

Group 1 Regression

Group 2 Classification

Group 3 Box center

Role-based Groupwise Quantization

Distribution of activations by channel
in the last layer of Proposal Module

Role-Group Roles

Group 1 Point Features

Group 2 Voting center coords.

Role-based Groupwise Quantization

Distribution of activations by channel
in the last layer of Voting Module

Quant. Granularity
based on Role-Group

SNU Graduate School of Data ScienceAIoT Lab 23

Implementation: Dataset

SUN RGB-D (Primary) Scannet V2 (Secondary)

Snapshot Reconstruction from >100 snapshots

SNU Graduate School of Data ScienceAIoT Lab 24

Implementation: Model
• Deeplabv3+ finetuning for PointPainting.

• 3D object detector Tensorflow conversion from original PyTorch implementation.
• For INT8 quantization and EdgeTPU-compiling supported by tflite.

0

10

20

30

40

50

60

70

VoteNet - PyTorch VoteNet - Tensorflow

SUN RGB-D

Scannet V2

m
A

P
@

 0
.2

5

SNU Graduate School of Data ScienceAIoT Lab 25

Implementation: Hardware platform
• Hardware platform with heterogeneous accelerators

SNU Graduate School of Data ScienceAIoT Lab 26

54

55

56

57

58

59

60

61

62

VoteNet
(FP32)

PointPainting
(FP32)

Random Split
(FP32)

PointSplit
(FP32)

PointSplit

FP32 Detection Accuracy on SUN RGB-D
m

A
P

@
 0

.2
5

PointSplit improves mAP @ 0.25 by 1.2
Due to Biased FPS

SNU Graduate School of Data ScienceAIoT Lab 27

INT8 Detection Accuracy on SUN RGB-D

0

10

20

30

40

50

60

70

VoteNet PointPainting PointSplit

FP32 INT32
m

A
P

@
 0

.2
5

Quant.
Errors

Quant.
Errors

PointSplit

Role-based groupwise quantization
preserves accuracy in PointSplit

SNU Graduate School of Data ScienceAIoT Lab 28

Detection Accuracy on Recent 3D Object Detectors

• GroupFree3D: Uses Transformer modules.

• RepSurf: Uses sophisticated 3D input representation.

m
A

P
@

 0
.2

5

55

56

57

58

59

60

61

62

63

64

GroupFree3D RepSurf

Baseline

PointPainting

Random Split

PointSplit

Results on FP32 (SUN RGB-D), implemented in Tensorflow

PointSplit shows better accuracy on
other baseline models!

SNU Graduate School of Data ScienceAIoT Lab 29

0

5

10

15

20

25

30

35

40

Layerwise Groupwise Channelwise Role-based Groupwise

Q
u

an
ti

za
ti

o
n

 E
rr

o
r

0

200

400

600

800

1,000

1,200

1,400

1,600

0

5

10

15

20

25

30

35

40

Layerwise Groupwise Channelwise Role-based Groupwise

Q

u
an

t.
 p

ar
am

et
e

rs

Q
u

an
ti

za
ti

o
n

 E
rr

o
r

Quantization Error Number of quant. Parameters

Impact of Quantization Granularity
(Lower is better) (Lower is better)

Results on PointSplit (SUN RGB-D)

Tolerable quantization error &
Small number of quantization parameters!

SNU Graduate School of Data ScienceAIoT Lab 30

Latency on SUN RGB-D

VoteNet
(FP32)

PointPainting
(FP32)

VoteNet
(INT8)

PointPainting
(INT8)

PointSplit
(INT8)

Voting and Proposal

PointNet++

Deeplabv3+

9,000

8,000

7,500

7,000

1,500

1,000

500

0

GPU Only GPU + EdgeTPU

In
fe

re
n

ce
 t

im
e

(m
s)

11.4x faster,
preserving accuracy

PointSplit

SNU Graduate School of Data ScienceAIoT Lab 31

Latency on Scannet V2

VoteNet
(FP32)

PointPainting
(FP32)

VoteNet
(INT8)

PointPainting
(INT8)

PointSplit
(INT8)

Voting and Proposal

PointNet++

Deeplabv3+

28,000

27,000

5,000

4,000

3,000

2,000

1,000

0

GPU Only GPU + EdgeTPU

24,000

25,000

26,000

24.7x faster,
preserving accuracy

In
fe

re
n

ce
 t

im
e

(m
s)

PointSplit

SNU Graduate School of Data ScienceAIoT Lab 32

Conclusion

• On-device 3D object detection with heterogeneous accelerators

• PointSplit: system-algorithm joint optimization
• Parallelizable feature extractor

• Biased farthest point sampling

• Role-based groupwise quantization

• 11-25x latency reduction, preserving accuracy

SNU Graduate School of Data ScienceAIoT Lab 33

Thank you very much!
감사합니다!

SNU Graduate School of Data ScienceAIoT Lab 34

Biased Farthest Point Sampling: Algorithm
• Farthest point sampling(FPS): base sampling technique in VoteNet.

• FPS twice? Two identical pointsets → Detection accuracy ▼

• Can we sample two complementary point sets?
• Another important information from segmentation results: Foreground boundary!

Biased Farthest Point Sampling

5

Initialization:
𝑃: Input point cloud
𝑆 = 𝑠1 : Sampled point set. 𝑠1 is randomly selected sample from 𝑃.

Distance from 𝑝𝑘 ∈ 𝑃 to 𝑆 = 𝑠1 :

𝑑𝑆 𝑝𝑘 = 𝑑(𝑝𝑘, 𝑠1) = 𝑝𝑘,𝑥 − 𝑠1,𝑥
2
+ 𝑝𝑘,𝑦 − 𝑠1,𝑦

2
+ 𝑝𝑘,𝑧 − 𝑠1,𝑧

2

For 𝑖 = 2,… , 𝑙, repeat steps (a) – (c)
(a) Find the farthest sample away from 𝑆:

𝑠𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑑𝑆 𝑝 , 𝑝 ∈ 𝑃
(b) Add 𝑠𝑖 as a new seed into S.
(c) Update the distance from 𝑝𝑘 ∈ 𝑃 to 𝑆:

𝑑𝑆 𝑝𝑘 ← min{𝑑𝑆 𝑝 , 𝑑 𝑝𝑘, 𝑠𝑖 }

Algorithm: Farthest Point Sampling

1

2

3 4

5

Biased FPS: More weights on favored (foreground) points

(denoted as 𝒜) in distance metric.

𝒅 𝒑𝒌, 𝒔𝒊 = 𝒘 ∗ 𝒑𝒌,𝒙 − 𝒔𝒊,𝒙
𝟐
+ 𝒑𝒌,𝒚 − 𝒔𝒊,𝒚

𝟐
+ 𝒑𝒌,𝒛 − 𝒔𝒊,𝒛

𝟐

𝒘𝒉𝒆𝒓𝒆 𝒘 = ቊ
𝑤0 𝑖𝑓 𝑝𝑘,𝑥 ∈ 𝒜 𝑜𝑟 𝑠𝑖,𝑥 ∈ 𝒜

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

SNU Graduate School of Data ScienceAIoT Lab 35

Supplementary

• Detection accuracy (SUN RGB-D, primary dataset)
• PointPainting: sequential 2D/3D fusion improves mAP@0.25 by 3.3.

• PointSplit achieves better mAP@0.25 than PointPainting or RandomSplit.

• Even after quantization, PointSplit shows comparable mAP to PointPainting.

• Detection accuracy on multiple datasets, varying
threshold or precision.
• On Scannet, PointSplit also shows comparable performance.

• At IoU thresholds of 0.5, PointSplit also shows comparable
performance.

• Regardless of precision, PointSplit shows good performance.

SNU Graduate School of Data ScienceAIoT Lab 36

Supplementary

• Communication overhead
• Alternating GPU / NPU may incur communication overhead. This is our limitation.

• How to measure comm. overhead?
• GPU memory copy time could be measured with NVIDIA profiler.

• Such a tool is not provided for EdgeTPU.

• Our trick:
• (1) Measure original tflite time: t_comm + t_comp

• (2) Create another tflite with same input/output but twice computation: t_comm + t_comp*2

• (2) – (1) = t_comp, then we can also calculate t_comm

SNU Graduate School of Data ScienceAIoT Lab 37

Supplementary

• Latency
• To inference a single scene (2D + 3D) from SUN RGB-D

with a GPU Only, it takes > 8,000ms.

• PointSplit decreases the latency to 750ms (11.4x faster),
while keeping comparable detection accuracy.
• Use of EdgeTPU increases the inference speed by 8.9x, and

pipelining increases the inference speed further by 1.3x.

• On ScannetV2, the final latency decreases from 27,000ms
to 1,400ms (24.7x).

• Peak memory
• Peak memory consumption decreased from 2.25GB to

1.18GB, thanks to lightweight software platform(tflite) as
well as quantization.

• Parallelizing across heterogeneous processors does not
sacrifice memory consumption.

11.4x

24.7x

SNU Graduate School of Data ScienceAIoT Lab 38

Supplementary

• Latency on more hardware configuration
• The operations are assigned to different processor combinations

(e.g. CPU – EdgeTPU: Point manipulation on CPU and Neural nets
on EdgeTPU).

• Across all combinations, PointSplit improved the inference time
by up to 1.8x on both SUN RGB-D and Scannet V2.

• Layerwise latency analysis
• Latency on each processor per layer shows that the largest gain

in inference time comes from parallelizing 2D-3D fusion
(PointPainting) and SA1 point manipulation.

• At later SA layers, GPU time decreases but EdgeTPU time
increases then decrease. This indicates further optimization
room for job allocation.

1.5x

1.5x
1.1x

1.3x

1.7x

1.8x

1.3x
1.3x

SNU Graduate School of Data ScienceAIoT Lab 39

Detection Accuracy on Scannet V2

50

51

52

53

54

55

56

57

VoteNet PointPainting Random Split PointSplit PointSplit

(INT8 Quantized)

m
A

P
@

 0
.2

5

PointSplit shows comparable accuracy!

SNU Graduate School of Data ScienceAIoT Lab 40

Latency on more hardware configuration

Recall PointSplit’s pipelining scheme…

Other processor combination is also possible.
(CPU – CPU, CPU – NPU, …)

SNU Graduate School of Data ScienceAIoT Lab 41

Latency on more hardware configuration

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8

Voting and Proposal

PointNet++

Deeplabv3+

CPU - CPU

1.5x

PointPainting (INT8)
PointSplit (INT8)

CPU - EdgeTPU GPU - CPU GPU - EdgeTPU

1.5x

1.1x

1.3x

In
fe

re
n

ce
 t

im
e

(m
s)

Speedup on all combinations

Results on SUN RGB-D

SNU Graduate School of Data ScienceAIoT Lab 42

PointSplit

• Can we optimize the model structure to have higher utilization on GPU/NPU?

• Let’s sample 2 point sets from the input point cloud, then process independently.
• Sample M centroids → (Sample M/2 centroids) × 2.

Same PointNet for both pointsets:
• Prevent model size from increasing
• More robust network training

