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GPUNPU

On-device machine learning Mobile heterogeneous processors

POTENTIAL to run more complex task?



Our Target Task

Indoor scene

RGB-D
camera

On-device 3D Object detection

3D

2D Chair

Table

Edge devices

Grouping

SamplingNN

Heavy / 
Heterogeneous 

Workload!

GPUNPU
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Detecting 
Head

3D Detector
PointNet++

PointNet++  
(Feature learning 

backbone)

Input 
Point Cloud

PointNet PointNet

FPS
(Farthest point sampling)

Ball query FPS /Ball query

Point manipulation

…

Point manipulation



Baseline: 2D + 3D Fusion 

RGB Image Segmentation results

Painted point cloud

Semantic 
Segmentation
(Deeplabv3+)

2D-3D projection

Point cloud

2D

3D

PointPainting

3D object 
detector



Which Job to Which Processor?

GPUNPU

Features
• Slower NN inference
• Wide coverage of operations

• Very fast NN inference
• Limited to NN operations

Processor

PointPainting (NN) Point manipulation
(FPS, Ball query) PointNet (NN)

Jobs



Challenge: Naïve Combination
• PointPainting and PoinetNet++ on GPU and NPU

Long idle time!

System - Algorithm Co-optimization?



Challenge: Quantization
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• Memory ↓ Speed ↑
• Marginal accuracy drop
• Required for ASIC 

(e.g. EdgeTPU)
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FP32

INT8

Clipping range

Significant model performance drop…

Why?



PointSplit

1. System - Algorithm joint optimization
• Biased farthest point sampling

• Parallelizable feature extractor

Low utilization of system under naïve combination



GPU/NPU Parallelization (Naïve Approach)

Painted 
point cloud

Sample M/2 points

Sample M/2 points

Can be executed concurrently

Sample M points



GPU/NPU Parallelization (Naïve Approach)

PointPainting

Point manipulation
(FPS, Ball query)

Point manipulation
(FPS, Ball query)

Point manipulation
(FPS, Ball query)

Point manipulation
(FPS, Ball query)

PointNet++

Semantic Segmentation
(Deeplabv3+) Painted point cloud

Busy

BusyIdle

Busy

Busy

Busy

Busy

Busy

Still idle time!

Two similar pointsets
Any better option?



Farthest Point Sampling

1

2

Farthest point is sampled

3

4

5

Per each point, minimum of 
distance from already sampled 

points is calculated

Farthest point is sampled

• Base sampling technique in PointNet++. 



Biased Farthest Point Sampling
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Farther distance if painted

• Biased towards painted points using foreground boundary!



Comparison of Sampling Techniques

Input painted 
point cloud

Normal FPS (𝒘𝟎 = 𝟏) Biased FPS (𝒘𝟎 = 𝟏𝟎)

Complementary point sets

Augmentation during training



Reminder: Naïve Combination
• PointPainting and PoinetNet++ on GPU and NPU

Long idle time!



Parallelizable Feature Extractor
• Runtime schedule of PointSplit on GPU and NPU

Reduced idle time and Higher utilization!

Parallelization!



PointSplit
1. System - Algorithm joint optimization

• Biased farthest point sampling

• Parallelizable feature extractor

2. Role-based groupwise quantization

Large quant. errors without quant. granularity consideration



Large Quantization Errors in tflite

NN Layer m

tflite - Layerwise Quantization
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Significant model 
performance drop!



Large Quantization Errors in tflite

NN Layer m

NN Layer m-1

NN Layer m+1

…
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Clipping range

Channel 1

Channel 2

Channel N-1

Channel N

…
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Difference in distribution by Channels!

𝒓𝒎𝒊𝒏 𝒓𝒎𝒂𝒙



Channelwise Quantization?
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Quant. errors ↓
Quant. parameters ↑ ↑

Any room for optimization? 



Role-Group Roles

Group 1 Regression

Group 2 Classification

Group 3 Box center

Role-based Groupwise Quantization

Distribution of activations by channel 
in the last layer of Proposal Module



Role-Group Roles

Group 1 Point Features

Group 2 Voting center coords.

Role-based Groupwise Quantization

Distribution of activations by channel 
in the last layer of Voting Module

Quant. Granularity 
based on Role-Group
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Implementation: Dataset

SUN RGB-D (Primary) Scannet V2 (Secondary)

Snapshot Reconstruction from >100 snapshots
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Implementation: Model
• Deeplabv3+ finetuning for PointPainting.

• 3D object detector Tensorflow conversion from original PyTorch implementation.
• For INT8 quantization and EdgeTPU-compiling supported by tflite.
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Implementation: Hardware platform
• Hardware platform with heterogeneous accelerators
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PointSplit improves mAP @ 0.25 by 1.2
Due to Biased FPS
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INT8 Detection Accuracy on SUN RGB-D
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Role-based groupwise quantization
preserves accuracy in PointSplit
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Detection Accuracy on Recent 3D Object Detectors

• GroupFree3D: Uses Transformer modules.

• RepSurf: Uses sophisticated 3D input representation.
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Results on FP32 (SUN RGB-D), implemented in Tensorflow

PointSplit shows better accuracy on 
other baseline models!
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Results on PointSplit (SUN RGB-D)

Tolerable quantization error & 
Small number of quantization parameters!
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Latency on SUN RGB-D
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11.4x faster, 
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Latency on Scannet V2
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Conclusion

• On-device 3D object detection with heterogeneous accelerators

• PointSplit: system-algorithm joint optimization
• Parallelizable feature extractor

• Biased farthest point sampling

• Role-based groupwise quantization

• 11-25x latency reduction, preserving accuracy
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Thank you very much!
감사합니다!
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Biased Farthest Point Sampling: Algorithm
• Farthest point sampling(FPS): base sampling technique in VoteNet. 

• FPS twice? Two identical pointsets → Detection accuracy ▼

• Can we sample two complementary point sets?
• Another important information from segmentation results: Foreground boundary!

Biased Farthest Point Sampling       

5

Initialization: 
𝑃: Input point cloud
𝑆 = 𝑠1 : Sampled point set. 𝑠1 is randomly selected sample from 𝑃. 

Distance from 𝑝𝑘 ∈ 𝑃 to 𝑆 = 𝑠1 :

𝑑𝑆 𝑝𝑘 = 𝑑(𝑝𝑘, 𝑠1) = 𝑝𝑘,𝑥 − 𝑠1,𝑥
2
+ 𝑝𝑘,𝑦 − 𝑠1,𝑦

2
+ 𝑝𝑘,𝑧 − 𝑠1,𝑧

2

For 𝑖 = 2,… , 𝑙, repeat steps (a) – (c)
(a) Find the farthest sample away from 𝑆:

𝑠𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑑𝑆 𝑝 , 𝑝 ∈ 𝑃
(b) Add 𝑠𝑖 as a new seed into S.
(c) Update the distance from 𝑝𝑘 ∈ 𝑃 to 𝑆:

𝑑𝑆 𝑝𝑘 ← min{𝑑𝑆 𝑝 , 𝑑 𝑝𝑘, 𝑠𝑖 }

Algorithm: Farthest Point Sampling

1

2

3 4

5

Biased FPS: More weights on favored (foreground) points 

(denoted as 𝒜) in distance metric.

𝒅 𝒑𝒌, 𝒔𝒊 = 𝒘 ∗ 𝒑𝒌,𝒙 − 𝒔𝒊,𝒙
𝟐
+ 𝒑𝒌,𝒚 − 𝒔𝒊,𝒚

𝟐
+ 𝒑𝒌,𝒛 − 𝒔𝒊,𝒛

𝟐

𝒘𝒉𝒆𝒓𝒆 𝒘 = ቊ
𝑤0 𝑖𝑓 𝑝𝑘,𝑥 ∈ 𝒜 𝑜𝑟 𝑠𝑖,𝑥 ∈ 𝒜

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Supplementary

• Detection accuracy (SUN RGB-D, primary dataset)
• PointPainting: sequential 2D/3D fusion improves mAP@0.25 by 3.3.

• PointSplit achieves better mAP@0.25 than PointPainting or RandomSplit.

• Even after quantization, PointSplit shows comparable mAP to PointPainting.

• Detection accuracy on multiple datasets, varying 
threshold or precision.
• On Scannet, PointSplit also shows comparable performance.

• At IoU thresholds of 0.5, PointSplit also shows comparable 
performance.

• Regardless of precision, PointSplit shows good performance.
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Supplementary

• Communication overhead
• Alternating GPU / NPU may incur communication overhead. This is our limitation.

• How to measure comm. overhead?
• GPU memory copy time could be measured with NVIDIA profiler.

• Such a tool is not provided for EdgeTPU.

• Our trick: 
• (1) Measure original tflite time: t_comm + t_comp

• (2) Create another tflite with same input/output but twice computation: t_comm + t_comp*2

• (2) – (1) = t_comp, then we can also calculate t_comm
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Supplementary

• Latency
• To inference a single scene (2D + 3D) from SUN RGB-D 

with a GPU Only, it takes > 8,000ms.

• PointSplit decreases the latency to 750ms (11.4x faster), 
while keeping comparable detection accuracy.
• Use of EdgeTPU increases the inference speed by 8.9x, and 

pipelining increases the inference speed further by 1.3x.

• On ScannetV2, the final latency decreases from 27,000ms 
to 1,400ms (24.7x).

• Peak memory
• Peak memory consumption decreased from 2.25GB to 

1.18GB, thanks to lightweight software platform(tflite) as 
well as quantization.

• Parallelizing across heterogeneous processors does not 
sacrifice memory consumption.

11.4x

24.7x
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Supplementary

• Latency on more hardware configuration
• The operations are assigned to different processor combinations 

(e.g. CPU – EdgeTPU: Point manipulation on CPU and Neural nets 
on EdgeTPU).

• Across all combinations, PointSplit improved the inference time 
by up to 1.8x on both SUN RGB-D and Scannet V2.

• Layerwise latency analysis
• Latency on each processor per layer shows that the largest gain 

in inference time comes from parallelizing 2D-3D fusion 
(PointPainting) and SA1 point manipulation.

• At later SA layers, GPU time decreases but EdgeTPU time 
increases then decrease. This indicates further optimization 
room for job allocation.

1.5x

1.5x
1.1x

1.3x

1.7x

1.8x

1.3x
1.3x
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Detection Accuracy on Scannet V2
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PointSplit shows comparable accuracy!
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Latency on more hardware configuration

Recall PointSplit’s pipelining scheme…

Other processor combination is also possible.
(CPU – CPU, CPU – NPU, …)
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Latency on more hardware configuration
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Results on SUN RGB-D
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PointSplit

• Can we optimize the model structure to have higher utilization on GPU/NPU?

• Let’s sample 2 point sets from the input point cloud, then process independently.
• Sample M centroids → (Sample M/2 centroids) × 2.

Same PointNet for both pointsets:
• Prevent model size from increasing
• More robust network training


