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ABSTRACT

Running deep learning models on resource-constrained edge de-
vices has drawn significant attention due to its fast response, privacy
preservation, and robust operation regardless of Internet connec-
tivity. While these devices already cope with various intelligent
tasks, the latest edge devices that are equipped with multiple types
of low-power accelerators (i.e., both mobile GPU and NPU) can
bring another opportunity; a task that used to be too heavy for an
edge device in the single-accelerator world might become viable
in the upcoming heterogeneous-accelerator world. To realize the
potential in the context of 3D object detection, we identify several
technical challenges and propose PointSplit, a novel 3D object detec-
tion framework for multi-accelerator edge devices that addresses
the problems. Specifically, our PointSplit design includes (1) 2D
semantics-aware biased point sampling, (2) parallelized 3D feature
extraction, and (3) role-based group-wise quantization. We imple-
ment PointSplit on TensorFlow Lite and evaluate it on a customized
hardware platform comprising both mobile GPU and EdgeTPU. Ex-
perimental results on representative RGB-D datasets, SUN RGB-D
and Scannet V2, demonstrate that PointSplit on a multi-accelerator
device is 24.7X faster with similar accuracy compared to the full-
precision, 2D-3D fusion-based 3D detector on a GPU-only device.
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1 INTRODUCTION

On-device machine learning (ML), which runs deep neural networks
(DNNSs) directly on an edge device (e.g., mobile phone), has drawn
increased attention due to its potential to enable real-time and
private ML applications. Development of low-power Al accelerators
(e.g., mobile GPU and NPU), model compression schemes (e.g.,
quantization, pruning, and knowledge distillation), and system
execution techqgnies has enabled to run various intelligent tasks
on a device, such as 2D object detection and language processing
models [1, 2, 6, 14, 25, 57, 71].

Furthermore, although an edge device used to have a single type
of Al processor, the recent emergence of heterogeneous processor
System-on-Chips (SoCs) [66] has made the state-of-the-art mobile
devices equipped with both high-end mobile GPU and NPU. The
new class of edge devices with multi-type accelerators present an
opportunity to investigate interesting issues in the regime of on-
device ML, such as intra-device parallelism and algorithm-system
co-optimization by understanding different characteristics of the
accelerators. With such evolution of low-power hardware, systems,
and deep learning models together, more complex tasks that used
to be far from resource-constrained devices, such as 3D object de-
tection, might be able to run directly on device in real-time. Specifi-
cally, running 3D object detection directly on resource-constrained
devices, instead of powerful remote servers, has the potential to
significantly expand the scope of Al applications. For example, as
shown in Figure 1, a fast understanding of 3D indoor scenes di-
rectly on an edge device can be an important building block of the
upcoming mixed reality [20]. This work aims to investigate this
new opportunity: on-device 3D object detection using both GPU and
NPU.

Challenges. However, we identify that even with the latest edge
devices containing both GPU and NPU, enabling on-device 3D ob-
ject detection without sacrificing accuracy is challenging in many
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Figure 1: Target scenario: On-device 3D indoor scene under-
standing via RGB-D camera. On-device detection provides
advantages on privacy, latency, and communication burden.
2D-3D fusion can improve detection accuracy while utilizing
both GPU and NPU can accelerate on-device inference speed.

ways: (1) 3D object detection is typically designed as a sequential
process, making it hard to utilize GPU and NPU in parallel. (2) Since
GPU and NPU have different strengths, a 3D object detection model
should be analyzed thoroughly to distribute its computation to the
two processors synergistically. (3) Fusing 2D vision information
with a 3D point cloud (e.g., using an RGB-D camera) can improve
detection performance [4, 43, 47] but makes the computational bur-
den even heavier on the edge devices. (4) Quantization is necessary
to reduce computation as well as to utilize NPU but given that 3D
object detection is a sophisticated task, a naive approach would
significantly degrade the accuracy.

Approach. To tackle the challenges, we propose PointSplit, a novel
framework that provides system-driven model structure optimiza-
tion for on-device 3D object detection. For the baseline deep neural
network (DNN), we exploit VoteNet [46], a popular 3D object de-
tection network based on the PointNet++ backbone [44] for indoor
3D scene understanding, and borrow the idea of PointPainting [61]
to augment features in a 3D point cloud (only geometric features)
with 2D image semantics. Building on the baseline, we devise three
components for PointSplit as below:

e 2D semantics-aware biased 3D point sampling aims to per-
form point sampling, a necessary process for processing a point
cloud, more efficiently considering multi-type accelerator envi-
ronments. To this end, we paint each 3D point using 2D image
semantics and utilize the information to sample two complemen-
tary point sets, one from all points and the other more focused
on the painted points (i.e., object-related points). We perform set
abstraction (SA) process for the two point sets separately, called
SA-normal and SA-bias, respectively. In this way, we generate
two different views and perform two individual SA pipelines
from a single 3D point cloud scene, which cooperate with each
other to improve accuracy.

o Parallelized 3D feature extraction comes from the idea that
widely used 3D point set abstraction methods [44] comprise two
operations, (1) point sampling and ball query that can be run
only at GPU and (2) a neural net called PointNet [3] to process
the sampled points that can be run at NPU. The two Al pro-
cessors execute the two SA pipelines (SA-normal and SA-bias)
interchangeably: GPU processes sampling and ball query for
SA-normal while NPU processes PointNet for SA-bias, and vice
versa.
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e Role-based group-wise quantization is to compress neural
networks without sacrificing accuracy and is motivated by the
fact that layer-wise quantization significantly degrades accuracy
while channel-wise quantization requires many quantization
parameters. To find the sweet spot, we investigate each chan-
nel’s weight and activation distribution and find out that the
distribution heavily depends on the channel’s role. Based on the
observation, we group channels according to their role and per-
form group-wise quantization, which preserves accuracy with
only a few quantization parameters.

Contributions. Our contributions can be summarized as follows:

o This work is the first to investigate on-device 3D object detection
with heterogeneous low-power Al processors. Specifically, we
propose PointSplit, a novel framework that jointly designs system
and algorithm to effectively reduce inference latency on resource-
constrained devices.

e We deeply analyze the characteristics of a 2D-3D fusion-based
3D object detection model and design three unique components
to reduce and parallelize computation without sacrificing accu-
racy: 2D semantics-aware point sampling, parallelized 3D feature
extraction, and role-based group-wise quantization.

e We implement VoteNet, a popular 3D object detection model,
on TensorFlow from scratch! and our PointSplit on TensorFlow
Lite.2 Furthermore, we build a test resource-constrained platform
by combining NVIDIA Jetson Nano (including mobile GPU) and
Google EdgeTPU (an NPU type).

e Experiments show that on two representative datasets for in-
door 3D object detection, SUN RGB-D [56] and Scannet V2 [15],
PointSplit is up to 24.7 times faster than the full-precision, GPU-
only baseline while providing similar accuracy.

2 RELATED WORK

Given that this work is related to various fields, this section clarifies
what techniques we leverage or are inspired by and what aspects
our PointSplit newly explores.

2.1 On-device Machine Learning

On-device ML refers to running deep neural network (DNN) in-
ference locally without sending user data to the cloud. There has
been a growing interest in on-device ML due to its advantages in
latency and privacy. However, it is challenging to run DNN directly
on edge devices because their memory, computational resource,
and power consumption are strictly constrained. To address this
problem, a number of lightweight DNN architectures [51, 58—60]
and model compression techniques [19, 21-23, 28] have been pro-
posed. In addition, the development of low-power Al accelerators
(e.g., mobile GPU and NPU) has enabled various DNN-based ML
applications to be run on devices and showed notable results for
some tasks [2, 25, 57]. Furthermore, with the emergence of heteroge-
neous processor System-on-Chips (SoCs), scheduling or pipelining

VoteNet and other state-of-the-art 3D object detection models are implemented on
Pytorch (edge-unfriendly platform so far) but not on TensorFlow, which is a non-trivial
entry barrier to research on-device 3D object detection. To the best of our knowledge,
this work provides the first open implementation of VoteNet on TensorFlow.

2Code is available at https:/github.com/KeondoPark/votenet_tf

3This platform is a single device but not a system-on-chip (SoC). We expect perfor-
mance improvement of PointSplit when using a SoC including multi-type accelerators.
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techniques have been developed to efficiently utilize multiple pro-
cessors [30, 52, 68].

However, to our knowledge, there has not been any successful
attempt for on-device 3D object detection even though heteroge-
neous low-power Al processors are given. As a step forward, this
work presents a system-algorithm joint design of 3D object detec-
tion to effectively reduce inference latency by fully leveraging the
capacity of NPU and GPU on an edge device.

2.2 3D Object Detection

3D object detection is an essential component in robotics, AR/VR
and autonomous driving, which require accurate 3D localization
of objects. Here 3D localization includes measuring the distance
between a user (or robot/vehicle) and an object and the size of
the object (i.e., bounding box). For example, in AR/VR applications,
inaccurate 3D localization cloud lead to unrealistic display of scenes
or user dissatisfaction.

Various methods have been proposed to estimate 3D bounding
boxes of objects from point clouds. Many studies rely on voxel-
based approaches to process 3D data, such as 3D CNN [41, 65] and
Voxel transformer [40]. To reduce the quantization error as well
as large memory and computation cost inherent in voxel-based
approaches, voxel feature encoding [73], hybrid voxel network [70],
or point-voxel fusion methods have been proposed [37, 54, 55].
Another group of methods process point clouds directly for 3D
scene understanding. PointNet [3] and PointNet++ [44] use sym-
metric functions to extract features from irregularly distributed
points. VoteNet [46] exploits voting information from the features
extracted from points by PointNet++. More recent work uses graph
convolution to improve the feature extraction process [5] or an
enhanced voting scheme to improve detection accuracy [72].

RGB information can be supplemented to understand 3D scenes.
MV3D [12] generates 3D object proposals from a bird’s-eye view
and uses deep fusion to combine 3D and 2D information. Frustum-
PointNet [45] utilizes 2D object detection results to guide 3D object
detection. 3D-SIS [24] projects extracted features from 2D convo-
lutions back to a 3D voxel grid to detect objects in a 3D scene.
Given that these fusion techniques do not achieve expected per-
formance improvement over 3D-only approaches, PointPainting
[61] proposes a sequential fusion as an alternative. It obtains 2D
semantic segmentation scores and appends the information to each
projected point in 3D space. Despite its advantage on accuracy, the
sequential fusion significantly degrades latency.

In terms of 3D object detection model architecture, this work
takes a point-based, 2D-3D fusion approach, inspired by VoteNet
and PointPainting. With our design choices tailored for a multi-
type accelerator environment, PointSplit takes advantage of 2D-3D
fusion to improve accuracy without sacrificing latency.

2.3 2D Semantic Segmentation

We utilize 2D semantic segmentation to fuse 2D image semantics
with 3D point cloud to improve detection accuracy. In this regime,
early work first suggested that convolutional neural network pro-
vides significant performance improvement over methods relying
on hand-crafted features [18, 39]. U-net [49] proposed a U-shaped
architecture to improve the capacity of the decoder by connecting
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expanding paths to contracting paths. Deeplab [7-10] further im-
proved segmentation accuracy by using atrous convolution and a
more advanced encoder-decoder structure. We use Deeplabv3+ [8]
as our semantic segmentation network.

2.4 Deep Neural Network Quantization

Quantization is an active research area with the rising popularity
of edge devices. It aims to carry out the inference with low-bit oper-
ations for the efficient use of resources while preserving accuracy.
Ternary weight networks [33] or Binary Neural Networks [27] bi-
narize weights and activations of neural networks. Jacob et al. [28]
proposed an integer arithmetic only quantization scheme, which
significantly accelerates inference and can run on accelerators that
support only integer operations, such as EdgeTPU. In this work, we
take the full quantization approach to run the model on EdgeTPU.

While most work on quantization targets image classification
tasks, a few recent studies [11, 17, 34] suggest quantization tech-
niques optimized for 2D object detection. To our knowledge, how-
ever, there has been no work that specifically targets the quan-
tization of a 3D object detector. In doing so, we focus on quanti-
zation granularity, one of the key considerations in quantization.
Layer-wise quantization [32] determines the clipping range of the
quantization from the statistics of the entire layer. On the other
hand, statistics from each channel are used to calculate the clipping
range in channel-wise quantization [26, 28]. Q-BERT [53] groups
multiple channels to decide the clipping range for quantizing the
transformer network. Although our approach also groups multi-
ple channels, we find out that doing it in a different manner is
more effective for 3D object detection: taking model semantics into
account, rather than grouping evenly.

3 BASELINE AND MOTIVATION

This section presents the baseline network for 2D-3D fusion-based
3D object detection that our PointSplit builds upon, and analyzes
the problems when naively applying the baseline for a multi-type
accelerator environment, which motivates PointSplit.

3.1 The Baseline: PointNet++ and PointPainting

Our baseline is a 3D object detection model that fuses a 2D image
and a 3D point cloud from an RGB-D scene. We choose VoteNet [46]
as the baseline 3D object detector, which is widely-used for indoor
scene understanding. VoteNet utilizes PointNet++ [44] as the back-
bone to extract features from a 3D point cloud. For 2D-3D fusion,
we take the approach in PointPainting [61], performing 2D seman-
tic segmentation first and utilizing the semantic information for
more accurate 3D object detection. We use Deeplabv3+ [8] as the
2D semantic segmentation model and MobileNetV2 [51] as its light-
weight feature extractor.

While the baseline sequentially runs Deeplabv3+ and VoteNet,
its essence, highly related to our PointSplit design, is in the Point-
Net++ backbone and the fusion method in PointPainting, which
are described below.

PointNet++ for 3D Point Set Abstraction. Extracting meaningful
features from a set of 3D points is important to detect objects from
a 3D scene. While 2D image features can be extracted purely with
a neural net due to the dense nature of the RGB image, due to the
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Figure 2: Illustration of naive workload distribution to run the sequential pipeline of PointPainting on a GPU-NPU combined
environment. Among the three figures in the input scene, only the triangle shape is assumed to be a valid object (foreground
points). Either of the processors is always idle, waiting for the other to finish its job.

sparse nature of 3D point clouds, it is essential for a 3D point set
abstraction method to intermingle point manipulation with neural
nets. To this end, PointNet++ [44] has set abstraction (SA) layer that
includes both point manipulation and neural net.

Specifically, given a point cloud, an SA layer first constructs mul-
tiple groups of neighboring points by performing point sampling
and ball query sequentially. To sample center point for each group,
PointNet++ utilizes the farthest point sampling (FPS) method, which
samples a new point that is most distant from the already sampled
points. Ball query draws a ball around each center point and groups
neighboring points in each ball. After the point manipulation, a
local feature vector is extracted for each ball by processing a neural
net called PointNet [3]. Since each ball is represented as its center
point, the SA layer can be performed again based on the set of
center points as a new point cloud input to extract higher-level
features. PointNet++ repeats the SA layer four times to extract
high-level features hierarchically from a raw-level point cloud.

PointPainting for 2D-3D Fusion. Before processing a point cloud,
PointPainting first performs semantic segmentation on a 2D image
of the same scene, which divides the image pixels into two groups:
foreground (object-related) and background groups. The semantic
information is given to each 3D point as an additional feature. Then
3D object detection is performed based on the semantic-aware 3D
point cloud, which improves accuracy.

3.2 Motivation: A Naive Application of the
Baseline on Multi-type Accelerators

Running the fusion-based sequential 3D object detection pipeline
on a GPU-only environment suffers from long latency, which is also
recognized in [61]. To mitigate the problem, the authors proposed
a consecutive matching method, which reuses 2D segmentation
results of a previous scene for detecting objects on the current scene.
However, this approach is vulnerable to the difference between
the current and previous scenes and cannot be applied to single-
shot detection scenarios. By using GPU and NPU together, we aim
to provide concurrent matching that performs both 2D semantic
segmentation and 3D object detection on the current scene.

When running the baseline on a multi-type accelerator environ-
ment (GPU and NPU), it is important to consider what operations
can be executed on NPU since it is faster than GPU but supports
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limited operations. As a neural network accelerator, NPU can pro-
cess only Deeplabv3+ and PointNet, neither point sampling nor
ball query. Therefore, to utilize both NPU and GPU, it is natural to
perform point sampling and ball query on GPU, and PointNet and
Deeplabv3+ on NPU. Figure 2 depicts this naive approach.

As shown in Figure 2, however, without changing the base-
line’s sequential process, the naive workload distribution inevitably
causes idle time on both processors. When processing PointNet++,
NPU has to wait while GPU performs point sampling and ball query,
and GPU also needs to wait while NPU processes PointNet. The
same issue arises when fusing 2D and 3D information; while NPU
performs 2D semantic segmentation via Deeplabv3+, GPU waits
for the semantic segmentation results in the idle state. Although
running these neural nets on NPU instead of GPU has its own speed
gain, we aim to step further by reducing the idle time.

4 POINTSPLIT

This section presents our PointSplit design, which aims to answer
the following questions: (1) Can we create two parallel SA pipelines
to utilize both GPU and NPU simultaneously without sacrificing
accuracy? (2) Can GPU do something meaningful using the point
cloud while NPU processes 2D semantic segmentation? (3) How
can we minimize accuracy drop when fully quantizing the baseline
3D object detector?

Figure 3 illustrates our parallel processing of the baseline net-
work. To divide the SA process in PointNet++ into two lightweight
parallel pipelines, we design point sampling and ball query for each
SA pipeline to generate only half the number of balls (i.e., the num-
ber of center points) while being processed on GPU. While NPU
processes PointNet with the reduced number of balls for an SA
pipeline (called SA-1), GPU performs point sampling and ball query
again to generate the other half of balls for the other SA pipeline
(called SA-2) in parallel. This method reduces computation for each
SA pipeline and parallelizes point manipulation and neural net
operations, which reduces each processor’s idle time.

In addition, to utilize 2D semantic information for both light-
weight SA pipelines without significant delay, one SA process (SA-1)
Jjump-starts on GPU without waiting for the segmentation results
from NPU since the segmentation results are needed for PointNet,
not point manipulation. After GPU and NPU finish the point ma-
nipulation (for SA-1) and 2D segmentation tasks, respectively, NPU
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Figure 3: Illustration of PointSplit’s parallelized set abstraction (SA) pipeline. Each lightweight SA process in PointSplit generates
only half the number of balls compared to the conventional SA layers in PointNet++. When GPU processes point manipulation
for an SA pipeline, NPU processes PointNet for the other SA pipeline in parallel, which reduces idle time on each processor.

computes PointNet for SA-1 by using the semantic information and
GPU performs point manipulation for the other SA pipeline SA-2.

While the fundamental pipelining structure is effective in terms
of latency, we aim to go further by applying different point sam-
pling strategies for SA-1 and SA-2 to create synergy between the
two for accuracy improvement. In addition, since the NPU-based
acceleration is meaningful only when the object detection model
can maintain accuracy after fully quantized, we develop a new
quantization scheme for 3D object detectors.

4.1 2D Semantics-aware Biased Point Sampling

To create synergy between the two lightweight SA processes (SA-
1 and SA-2), we focus on the fact that SA-1 starts before the 2D
segmentation task is finished but SA-2 starts after the 2D segmenta-
tion. This means that while both SA-1 and SA-2 utilize the semantic
information when processing PointNet for feature augmentation,
SA-2 can utilize the 2D semantic information also for its point ma-
nipulation, if it is useful. Given that PointPainting utilizes the se-
mantic information only for neural net operations, the idea of 2D
semantics-aware point manipulation is new.

Specifically, since 2D semantic information distinguishes fore-
ground points (those on valid 3D objects) from background points,
we propose semantics-aware biased point sampling by giving differ-
ent priorities for foreground and background points when perform-
ing point sampling (FPS in the case of PointNet++). The intuition
is that point sampling with a biased distribution can generate an
augmented view for PointNet from the same 3D scene, which im-
proves the model’s detection performance. Since a 3D input scene
for PointNet consists of sampled points instead of the whole point
cloud, multiple different (augmented) inputs can be generated from
an original point cloud scene depending on how the input points
are sampled.

To apply the semantics-aware biased sampling strategy for the
FPS method, we manipulate the distance between two 3D points
p1 and py, denoted as d(p1, p2), according to the type of the two
points (foreground or background). Considering a point set S and
its subset A (C S) comprising the foreground points in S, we
re-define the distance metric d(p1, p2) as follows:
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(c) Result of biased FPS
(wp = 10)

(a)Point cloud input,
painted with semantics

(b) Result of normal FPS
(wo =1)

Figure 4: Illustration of PointSplit’s semantics-aware biased
point sampling. Using the same point cloud scene, our biased
sampling can create significantly different multiple views by
controlling the weight coefficient wy.

d(pr.pz) =wx[(x1 = x2)? + (41— 92)% + (21— 22)2,

wo ifpreAorpreA @

where w = {

1 otherwise

Here (x1,y1,2z1) and (x2, y2, z2) are the 3D coordinates of p; and
p2, respectively. In addition, wy is a weight coefficient that can
prioritize (when wg > 1) or de-prioritize (when wy < 1) foreground
points in the FPS process. For example when wy is larger than 1,
the distance metric intentionally increases distance between p; and
p2 if at least one of them is included in A. If both points are in A€,
their distance is calculated normally. Thus, points in A are more
likely to be selected as the farthest point in each iteration of FPS.

Figure 4 illustrates the impact of different wy values on the result
of FPS. When wy = 1, points are sampled equally from both the
foreground and background areas as the regular FPS does (Figure
4(b)). When a large weight is given to the painted (foreground) area
(wo = 10), most points are sampled from the painted area (Figure
4(c)). The impact of wy value on the performance will be evaluated
in Section 6.2. Overall, for a single point cloud input (Figure 4(a)),
our biased sampling strategy can produce different multiple views.
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Figure 5: Illustration of PointNet++ structure optimized for PointSplit. (1) An input point cloud is divided into two heterogeneous
SA pipelines, one with regular FPS and the other with biased FPS. (2) The two SA pipelines share a single PointNet for data
augmentation effect. (3) The two SA pipelines are merged before the fourth SA layer. (4) After SA layers, two FP layers are
processed back to back and the last single PointNet produces the final output.

Table 1: Comparison of the amount of computation and
model size between the feature propagation (FP) layers in
PointNet++ and PointSplit

Components PointNet++ PointSplit
P Two PointNets One modified PointNet
# of Parameters 398,336 197,888
MAdd 304 M 202 M

4.2 PointNet++ Optimization for Parallism

With the two separate lightweight SA pipelines, SA-1 with regular
sampling and SA-2 with biased sampling, we optimize the Point-
Net++ architecture to perform the two SA pipelines simultaneously
on GPU and NPU, as illustrated in Figure 5. From now, we call SA-1
SA-normal and SA-2 SA-bias. Assume that an input point cloud for
aregular SA layer has N points and M(< N) centroids are sampled
in the point manipulation stage. For SA-normal in PointSplit, M /2
centroids (half compared to the regular SA) are sampled under regu-
lar FPS without using 2D semantic information. These centroids
help the network to capture the overall context of the 3D scene. For
SA-bias, another set of M/2 centroids is sampled under biased FPS
with more weight given to the foreground points. The biased point
set contains more information for objects. We use wy = 2 for biased
FPS on foreground points, which will be discussed in Section 6.2.

We fine-tune the PointNet++ architecture to improve accuracy.
Importantly, among the four SA layers?* in PointNet++, the SA-bias
pipeline uses biased FPS only for its first two SA layers; normal FPS
is applied for the subsequent SA layers to capture the overall context
at the end. In addition, the two sets of centroids from SA-normal
and SA-bias are fused before the last (fourth) SA layer. As for the
neural network part (i.e., PointNet), we do not separately train two
versions of PointNet for the two lightweight SA pipelines but train
a single PointNet for both SA-normal and SA-bias. By doing so, we
not only keep the network size from increasing but also expose
the network to more diverse inputs with different characteristics,
enabling robust detection (i.e., data augmentation effect).

Lastly, PointNet++ has two feature propagation (FP) layers after
the four SA layers, each of which includes point manipulation and
PointNet similar to an SA layer. For the two FP layers, we do not

4For the first three SA layers, the number of centroids for each normal SA and biased
SA is 1024, 512, and 256, respectively. The radius for the ball query is 0.2, 0.4, 0.8, and
1.2 in each of the four SA layers, as in VoteNet.
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maintain parallel processing because the two point sets are already
fused before the fourth SA layer. In addition, we remove Point-
Net from each FP layer and attach a single shared fully-connected
layer at the end of the second FP layer. As shown in Table 1, this
simple modification achieves multiple advantages: reducing com-
munication overhead between GPU and NPU, the number of model
parameters 50.3%, and the computation overhead 33.6%. Despite
the size and computation reduction from this change, we confirmed
that it does not hurt the detection accuracy of the model.

4.3 Role-based Group-wise Quantization

Quantization is necessary to accelerate 3D object detection on an
edge device but should be done carefully to not lose accuracy, given
that 3D object detection is a complicated task. To this end, we care-
fully consider how to set quantization granularity. Various levels
of granularity have been proposed, such as layer-, channel-, and
group-wise quantization [26, 28, 32, 53]. As can be inferred from the
names, these techniques determine the clipping range for weights
or activations depending on their distributions in an entire layer,
each channel, or a group of several channels, respectively. Channel-
wise quantization is the most sophisticated method, providing the
best accuracy but requiring the largest number of quantization
parameters. On the other hand, layer-wise quantization requires
relatively small overhead but results in significant accuracy loss.
Group-wise quantization is halfway between channel- and layer-
wise quantization in terms of both the overhead and the accuracy
loss. However, simply selecting one of the existing options might
end up with inefficient quantization since model characteristics are
not considered.

For accurate quantization using a small number of parameters,
we observe distributions of activations and weights in VoteNet,
finding out that each channel’s weight and activation distributions
vary greatly in the last layer of voting and proposal modules. We
analyze the model structure and reveal that different distributions
between groups of channels at a single layer come from their differ-
ent roles. Both the voting and proposal modules of VoteNet produce
heterogeneous outputs that consist of xyz-coordinates, features
of the resulting points, bounding box size, etc. For example, the
proposal module consists of different channels in charge of center
regression, heading bin regression and classification, size regression
and classification, and object classification. We observe that the
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Figure 6: The distributions of weights and activations in voting/proposal module. Channels in different group are marked
as different color in the figure. Since there are too many channels for visualization in the voting module, the values in 4

consecutive channels are grouped as a single distribution.

Table 2: Three groups divided according to the role of chan-
nels in the proposal module of VoteNet

Role-Group Channels # of channels
Group1 xyz-coordinates 3
Objectness score 2
Group2 Heading bin classification 12
P Size classification # of classes
Objectness category classification # of classes
Group3 Heading bin regression 12

Size regression

# of classes X 3

distributions of weights and activations in channels appear similar
according to their roles.

Importantly, we further discover that the distributions can be
grouped according to whether the channel is responsible for clas-
sification or regression. To utilize this characteristic, we group
channels in the layer according to each channel’s role. In the voting
module, channels are divided into two groups: the one in charge of
predicting xyz-coordinates and the other for predicting the features.
In the proposal module, channels are divided into three groups as
shown in Table 2: the one in charge of predicting xyz-coordinates,
another for heading bin, size cluster, and object classification, and
the last group for regressing the size and orientation of the bound-
ing box. We use post-training quantization [28] to fully quantize
the weights and activations to 8-bit integer.

To clarify our role-based grouping, we rearrange the order of
the channels in both the voting and proposal modules in the last
layer of VoteNet according to their role-based groups and plot the
distributions of their weights and activations in Figure 6. The figure
confirms that each channel’s weight and activation distributions
vary greatly in the last layer of voting and proposal modules, de-
pending on its role: which type of outputs to take charge of. For
example, As shown in Figures 6(c) and 6(d), for the first three chan-
nels of the proposal module (i.e., blue bars, Group 1 in Table 2),
weight and activation values are densely distributed around the
mean value and min/max range is small. On the other hand, the
next group of 24 channels (i.e., green bars, Group 2 in Table 2) has a
more dispersed distribution of weights and activations. As another
visualization, Figure 7 shows Kullback-Leibler (KL) divergence of ac-
tivations in a proposal module of VoteNet. The figure confirms that
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Figure 7: Kullback-Leibler (KL) divergence of activations in
a proposal module of VoteNet. Dark blue implies larger KL
divergence. KL divergence between different role-based chan-
nel groups has greater magnitude (e.g. group 3-27 vs 28-69).

distribution difference between activations from different channels
is noticeable when channels are in different role-groups.

5 IMPLEMENTATION
5.1 Datasets

We train/test PointSplit on two representative datasets for indoor
3D scene understanding: SUN RGB-D [56] and Scannet V2 [15].

SUN RGB-D (the primary dataset). Given that each SUN RGB-D
image is a single RGB-D shot, SUN RGB-D is the primary dataset
that fits our scenario in which an edge device performs inference
on a single RGB-D shot. The SUN RGB-D dataset includes 10,335
RGB-D images taken indoors. 5,285 images are used for training
and 5,050 images are used for validation. Segmentation annotations
are provided for RGB images and 3D oriented bounding boxes of 37
categories are provided. We use the same data preparation step in
VoteNet [46] including conversion of the depth images into point
clouds and data augmentation.
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Table 3: Per-class accuracy (mAP) at IoU threshold 0.25 of two VoteNet implementations on SUN RGB-D: (1) the original Pytorch
implementation [46] and (2) our own TensorFlow implementation. Our implementation provides comparable performance to
the original version, serving as an open implementation that can be converted into TensorFlow Lite for on-device inference.

Item Bathtub Bed Bookshelf Chair Desk Dresser Nightstand Sofa Table Toilet ‘ Overall
VoteNet-Pytorch [46] 74.4 83.0 28.8 75.3 220 29.8 62.2 64.0 473 90.1 57.7
VoteNet-TensorFlow (ours) 72.4 84.0 25.3 74.1 24.2 30.0 614 61.6  49.7 86.8 56.9

Scannet V2 (the secondary dataset). In contrast to SUN RGB-D,
a Scannet V2 scene is not constructed from a single RGB-D shot
but ~1,500 shots with various different views that scan a ~20x
wider area more completely, resulting in much less occlusion and
richer annotations. However, due to the scanning process, it takes
a long time to get a scene for inference, which is not proper for our
scenario. Therefore, we utilize Scannet V2 as the secondary dataset.

Given that fusing 2D semantic information of all the 1,500 images
is not practical, we randomly select only three 2D images to evaluate
the impact of 2D-3D fusion. The unbalanced information between
2D and 3D (i.e., using only three out of 1,500 2D images but a
3D point cloud containing all the 1,500 shots) is unfavorable for
PointSplit. The reason why we include Scannet V2 even though
it is less practical and unfavorable for PointSplit is to show that
PointSplit generally works well for multiple datasets.

Scannet V2 includes 1,513 scanned 3D indoor scenes and objects
with 18 classes. 1,201 scans are used for training and 312 scans are
used for validation. We also use RGB images and segmentation
labels exported from the scanning stream for 2D-3D fusion.

5.2 Platform with Multi-type Accelerators

3D detector implementation on TensorFlow. Although there
are various DNNs that run on powerful servers, implementing them
to run on an edge device is a labor-intensive and time-consuming
task. Specifically, given that 3D object detection has been unex-
plored in the on-device ML regime, VoteNet is implemented only
on Pytorch that is not an edge-friendly platform yet. To overcome
the hurdle, we implement and train VoteNet on Tensorflow from
scratch and achieve comparable performance to the original Pytorch
version [46], as shown in Table 3. Thus, this work serves as the first
open implementation of VoteNet on TensorFlow, which can easily be
converted into a TensorFlow Lite model to test on-device inference.
Specifically, we use Adam optimizer with an initial learning rate of
0.001. The learning rate is decreased by 10 times after 80 and 120
epochs. We train the model for 180 epochs and it takes around 10
hours on one RTX 3090 with Intel Xeon® Silver 4216 CPU on SUN
RGB-D dataset [56] and 5 hours on Scannet V2 dataset [15].

Hardware platform. To measure inference speed, we build a low-
power platform with multi-type accelerators by combining Google
Coral M.2 accelerator with NVIDIA Jetson Nano, as shown in Fig-
ure 8. NVIDIA Jetson Nano includes a quad-core ARM A57 CPU,
128-core Maxwell GPU of 512 GFLOPS and 4 GB 64-bit LPDDR4
memory. Coral M.2 accelerator includes an EdgeTPU coprocessor
- an ASIC chip built for neural network inference, which is capa-
ble of 4 trillion operations per second. Coral M.2 accelerator is
connected to Jetson Nano via PCle Gen2 x 1 and shares its main
DRAM memory. Given that Coral EdgeTPU only supports integer
operations, we quantize our model to INT8 and convert our model
into TensorFlow Lite to compile it to be EdgeTPU-compatible. Note
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Figure 8: Test environment with heterogeneous processors.
We use NVIDIA Jetson Nano (GPU) equipped with Google
Coral M.2 accelerator (EdgeTPU).

that although this platform is a single device including both GPU
and EdgeTPU, it would be more ideal to utilize an integrated SoC
as technology evolves. For example, although not available when
we started this work, Apple’s recent M1 architecture is designed
for CPU, GPU, and NPU to share cache or memory.

5.3 Deeplabv3+ for 2D Semantic Segmentation

To implement PointPainting, we use Deeplabv3+ [8] with MobileNet
V2 backbone [51] as a semantic segmentation network. We first pre-
train Deeplabv3+ on COCO dataset [35] and fine-tune the weights
on each target dataset, SUN RGB-D and Scannet V2. For fine-tuning
for a target dataset, we use images and semantic segmentation labels
in the target dataset along with COCO dataset. We oversample some
under-represented classes 5 times for the model to better locate
those classes, as proposed in [31]. The oversampled classes include
desk, dresser, night stand, bookshelf, bathtub from SUN RGB-D
and window, bookshelf, picture, counter, desk, curtain, shower
curtain, garbage bin from Scannet V2. We use SGD optimizer with
momentum 0.9 and initial learning rate 0.05, and decay learning
rate 0.94 on every 2,000 training steps. The final mIoU on SUN RGB-
D validation images is 40.7%, and the final mIoU on ScannetV2
validation images is 47.7%. Detailed per-class accuracy on both
datasets are summarized in Tables 4 and 5, respectively.

6 EXPERIMENTS

6.1 Experimental setup

Following the recent practice in VoteNet, we use mean average
precision (mAP) at 0.25 IoU threshold as our evaluation metric. The
evaluation result is reported on the 10 most common categories for
SUN RGB-D validation data, and 18 object categories for Scannet V2
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Table 4: Semantic segmentation accuracy (mlIoU) of Deeplabv3+ on 2D images in the SUN RGB-D validation dataset.

Item Bathtub Bed Bookshelf Chair

Desk Dresser

Nightstand Sofa Table Toilet ‘Overall

mloU 34.4 50.4 17.9 55.9 16.9

25.8

22.2 414 401 549 | 407

Table 5: Semantic segmentation accuracy (mIoU) of Deeplabv3+ on 2D images in the Scannet V2 validation dataset.

Item Cab Bed Chair Sofa Table Door Wind Bkshf Pic

Cntr

Desk Curt Fridg Showr Toil Sink Bath Gbg ‘Overall

mloU 458 532 508 554 60.6 40.7 25.5 20.7 285

28.1

395 432 543 454 793 544 665 351 ‘ 47.8

Table 6: Per-class accuracy (mAP) at IoU threshold 0.25 of various 3D object detectors on SUN RGB-D (our primary dataset).
PointSplit (FP32) provides the best accuracy for 4 out of 10 classes, resulting in the best overall mAP performance. After
quantized, PointSplit still performs comparably to PointPainting and significantly outperforms VoteNet.

Item Bathtub Bed Bookshelf Chair Desk Dresser Nightstand Sofa Table Toilet Overall
VoteNet (FP32) 72.4 84.0 25.3 74.1 24.2 30.0 61.4 61.6 497 86.8 56.9
PointPainting (FP32) 68.0 86.5 29.6 74.1 24.6 39.9 61.8 779 493 90.0 60.2
RandomSplit (FP32) 61.9 85.6 33.8 74.5 26.4 38.7 61.7 79.7 52.8 88.9 60.4
PointSplit (FP32) 69.0 86.0 34.0 749 27.0 39.7 60.1 78.5 518 92.5 61.4
PointSplit (INT8) 62.7 86.3 33.0 74.4 25.5 39.3 58.9 77.6  50.6 90.5 59.9

validation data. As in VoteNet, we do not consider the bounding box
orientation for Scannet V2 evaluation. As mentioned in Section 5,
to fuse 2D information with a 3D point cloud scene, we use a single
RGB image for the SUN RGB-D dataset and three RGB images for the
Scannet V2 dataset. In addition, according to the standard practice
for each dataset, we randomly sample 20,000 points and 40,000
points from an original point cloud of SUN RGB-D and Scannet
V2, respectively, to construct an input point cloud for the first SA
layer of PointNet++. Given that a Scannet V2 scene covers nearly
20 times larger area than a SUN RGB-D scene, an input point cloud
in Scannet V2 is sparser than that in SUN RGB-D. Note that the
results in SUN RGB-D is more important since it fits our scenario,
while those in Scannet V2 show PointSplit’s general applicability.
We measure the latency on Jetson Nano equipped with EdgeTPU.
We do three warm-up runs and experiment 20 times, then report
averaged latency. Per each experiment, the latency is measured to
process four 3D scenes and averaged to report per-scene latency.

6.2 Detection Accuracy

Analysis on SUN RGB-D (primary dataset). Table 6 shows per-
class detection accuracy (mAP) of various 3D object detectors on the
SUN RGB-D dataset. VoteNet relies only on a point cloud without
fusing 2D information, providing the lowest accuracy. PointPaint-
ing, the baseline network, combines Deeplabv3+ and VoteNet to
fuse 2D semantic information for 3D object detection, which signif-
icantly improves accuracy over VoteNet (+3.3 mAP). This clearly
shows the advantage of 2D-3D fusion for 3D object detection.
Interestingly, although our PointSplit (full precision) originally
focuses on efficient pipelining for multi-type accelerator environ-
ments, it ends up with even better accuracy compared to Point-
Painting (+1.2 mAP). Specifically, out of 10 classes in SUN RGB-D,
PointSplit (full precision) achieves the best accuracy for 4 classes
and the second best accuracy for other 4 classes. This verifies the
effectiveness of our semantics-aware biased point sampling. By
building two separate lightweight SA pipelines that have different
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Table 7: mAP of various VoteNet-based 3D object detectors on
SUN RGB-D and Scannet V2, measured at IoU thresholds of
0.25 and 0.5. PointSplit provides the best mAP in most cases.

Method Dataset

Precision SUN RGB-D Scannet V2
@0.25/ @0.5 @0.25/ @0.5

VoteNet 56.9/31.1 54.9 /30.4

FP32 PointPainting  60.2 / 32.8 56.4 /31.7

RandomSplit 60.4/32.0 55.2/31.2

PointSplit 61.4/32.7 56.1/32.4

VoteNet 29.3/3.0 41.7/11.6

INT8 PointPainting 323/3.2 48.8/18.2
PointSplit 59.9/32.5 55.7/30.3

views of a single 3D scene, with regular FPS and biased FPS, respec-
tively, and making both pipelines pass through the same PointNet,
PointSplit trains PointNet more robustly with data augmentation.

For comparison, we also test an ablated version of PointSplit,
called RandomSplit, which randomly divides an entire point set
into two sets and applies regular FPS for both SA pipelines. With-
out biased sampling, RandomSplit does not provide an augmented
view, resulting in similar accuracy to PointPainting. Lastly, when
PointSplit is quantized with 8-bit precision, accuracy is dropped
marginally due to our role-based group-wise quantization. As a
result, PointSplit, even after quantized, performs comparably to the
baseline PointPainting (full precision).

Analysis on multiple datasets. To show PointSplit’s accuracy
gain more generally, Table 7 summarizes accuracy performance
of various schemes on both SUN RGB-D and Scannet V2 datasets,
before and after quantization. After quantized (layer-wise), both
VoteNet and PointPainting experience remarkable performance
degradation, which verifies our claim: activation and weight distri-
butions in a single layer are too different to quantize using a single
parameter set. In contrast, our PointSplit INT8) improves perfor-
mance with very large margins (up to +30.6 mAP@0.25) compared
to both VoteNet and PointPainting in both datasets and performs



IPSN ’23, May 09-12, 2023, San Antonio, TX, USA

Table 8: mAP of PointSplit combined with GroupFree3D [38]
and RepSurf [48] on SUN RGB-D and Scannet V2. Scannet V2
experiments use 5 2D images for 2D-3D fusion. (6,256) means
that the GroupFree3D model has 6 decoder layers and uses
256 object candidates.

Dataset

Method SUNRGB-D  Scannet V2

@0.25/ @0.5 @0.25/ @0.5
Baseline: GroupFreeSD“’ZSé) 58.0/38.3 63.7/38.8
Baseline + PointPainting 62.5/43.3 66.7 /41.2
Baseline + RandomSplit 61.9/40.4 66.6 / 33.7
Baseline + PointSplit 62.6 /42.5 67.8/45.4
Baseline: RepSurf-U + GroupFreeSD(f”ZS(’) 61.4/413 65.0 /41.0
Baseline + PointPainting 63.1/41.8 67.4/42.7
Baseline + RandomSplit 62.5/40.8 67.0/43.3
Baseline + PointSplit 63.5/42.1 68.5/46.7

even comparably to PointSplit (FP32). This demonstrates the effec-
tiveness of our role-based group-wise quantization scheme.
Although detailed trends are different due to different scene
characteristics, the results in Scannet V2 also confirm that both
semantics-aware biased point sampling and role-based group-wise
quantization scheme significantly contribute to performance im-
provement. Specifically, we observe that RandomSplit degrades ac-
curacy compared to PointPainting (-1.2 mAP@0.25) but PointSplit re-
covers performance successfully. Given that point representation in
Scannet V2 is already sparse (much sparser than that in SUN RGB-
D, as mentioned in Section 6.1), sampling only half the number of
points for each SA pipeline should be done carefully to not lose ac-
curacy. The performance gap between RandomSplit and PointSplit
verifies the validity of our biased point sampling in this aspect.

Analysis on recent, heavy 3D object detectors. The latest state-
of-the-art 3D object detectors on the SUN RGB-D and Scannet V2
leaderboards adopt heavy and edge-unfriendly transformer archi-
tectures [38, 48, 67, 69]. However, it is valuable to evaluate the
effectiveness of our biased point sampling and parallel pipelining
when applied to these models in terms of accuracy. To this end, we
implement recent transformer-based GroupFree3D [38] and Rep-
Surf [48] on TensorFlow and apply PointPainting, RandomSplit,
and PointSplit to the two heavy baselines.? Given that this evalua-
tion is not for efficiency, we do not apply quantization and utilize
two PointNets at the FP layers again (i.e., excluding the optimiza-
tion in Table 1) when implementing PointSplit to focus on better
accuracy. The results in Table 8 demonstrate that PointSplit suc-
cessfully improves mAP when combined with GroupFree3D and
RepSurf on both SUN RGB-D and Scannet V2 using two parallel SA
pipelines. This finding confirms that PointSplit is a viable technique
for improving the accuracy of multiple 3D object detectors.

Deeper look into biased point sampling. We analyze the impact
of detailed design choices for the semantics-aware biased point
sampling on performance. To this end, Table 9 shows PointSplit
performance on SUN RGB-D with varying wy value. As mentioned

SGroupFree3D employs a PointNet++ backbone and a transformer-based detection
head [38] while RepSurf improves the input representation of GroupFree3D [48]. Both
models have been re-implemented and trained on TensorFlow, leveraging the hyper-
parameters of their respective Pytorch implementations. As a result, the TensorFlow-
based models achieved a lower mAP compared to their original counterparts. It is worth
noting that identifying optimal hyperparameters for TensorFlow could potentially
improve their performance, which is out of the scope of this paper.
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Table 9: Accuracy of PointSplit on SUN RGB-D with vary-
ing wo for the semantics-aware biased point sampling. The
performance is maximized when point sampling is slightly
biased toward foreground points.

Weight
mAP

0.5 1.0 1.5 2.0 25 35

603 604 613 614 596 594

Table 10: Accuracy of PointSplit on SUN RGB-D when the
semantics-aware biased point sampling is applied to various
SA layers.

SA layers with biased FPS mAP
SA1 only 60.4

SA1 and SA2 61.4

SA1, SA2 and SA3 60.1
All SA layers 60.8

in Section 4.1, as wy increases, the biased point sampling mecha-
nism selects more foreground points than background points. The
results in Table 9 show that as wy increases, mAP performance first
increases but decreases again. Specifically, the highest accuracy
is achieved when wg = 2. The results show that proper balance
between foreground and background points is important when
constructing an augmented scene via the biased point sampling.
Specifically, sampling more foreground points turns out to be bene-
ficial but sampling too many foreground points is detrimental.

Next, we evaluate another design choice for the biased point
sampling: which SA layers to apply the biased point sampling
among the four SA layers in PointNet++. To this end, Table 10 shows
PointSplit performance on SUN RGB-D when our biased sampling
technique is applied to various SA layers, from the first (SA1) to
the last (SA4). The results show that applying the biased point
sampling to the first two layers provides the best performance but
applying it to more SA layers causes performance degradation again.
Given that applying the biased point sampling to multiple layers
consecutively increases the bias level, the results verify again the
need for balancing foreground and background points to maximize
PointSplit performance.

Impact of quantization methods. Table 11 evaluates PointSplit
on the two datasets with varying quantization granularity: layer-
wise, group-wise, channel-wise, and our role-based group-wise
methods. For the group-wise method, we group the entire layer
into 2 (for the voting module) or 3 (for the proposal module) groups
of an equal number of channels without considering their roles.
The results show that both layer-wise and group-wise quanti-
zation methods suffer from significant quantization errors but the
channel-wise method incurs only marginal errors. This verifies that
channels in a single layer of a 3D object detector have very different
weight and activation distributions, which requires fine-grained
quantization. The channel-wise quantization, however, is inefficient
since it requires more than 1,300 parameters to quantize a single
layer. On the other hand, our role-based group-wise quantization
achieves the sweet spot. It requires the same number of quantiza-
tion parameters compared to the naive group-wise quantization,
67x and 71X less than that of the channel-wise quantization on
SUN RGB-D and Scannet V2, respectively. With such small number
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Table 11: mAP at IoU threshold 0.25 of PointSplit on SUN RGB-D and Scannet V2, with various quantization methods. While
performing similarly to the most fine-grained channel-wise method, our role-based group-wise quantization method remarkably
reduces the number of quantization parameters, 67X and 71X less parameters on SUN RGB-D and Scannet V2, respectively.

.. SUN RGB-D ScannetV2

Quant. method Precision # of quant # of quant

mAP  Quant. error quant--) o ap Quant. error quant.

parameters parameters

No quant. FP32 61.4 - | 56.1 - -

Layer-wise INTS8 24.2 37.2 8 | 519 4.2 8

Group-wise INTS8 26.3 35.1 20 | 523 3.8 20

Channel-wise INTS8 61.0 0.4 1352 | 555 0.6 1424

Role-based group-wise (ours) INTS 59.9 1.5 20 | 554 0.7 20
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Figure 9: Per-scene latency and peak memory of 3D object
detectors. Latency on Scannet V2 is longer than that on SUN
RGB-D due to more 3D points. Compared to running Point-
Painting (FP32) only on GPU, PointSplit (INT8) is faster 11.4
times on SUN RGB-D and 24.7 times on Scannet V2.

of parameters, our scheme dramatically improves accuracy over the
group-wise quantization (+33.6 mAP on SUN RGB-D), and provides
similar mAP compared to the heavy channel-wise quantization.
This demonstrates the tight relationship between each channel’s
value distribution and its role in a 3D object detector.

6.3 System Performance

Latency analysis. Figure 9 shows average latency for single-scene
inference of various schemes, measured on our platform comprising
Jetson Nano and Coral. Generally, latency on Scannet V2 is longer
than that on SUN RGB-D. This is because an input point cloud is
twice larger and Deeplabv3+ runs three times more for a Scannet
V2 scene than a SUN RGB-D scene, as in Section 6.1. When using
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although 2D-3D fusion using PointPainting increases latency on
the multi-accelerator platform, the efficient pipelining scheme in
PointSplit nullifies the slowdown in SUN RGB-D, resulting in infer-
ence speed comparable to VoteNet (INT8) with significantly better
accuracy (+30.6 mAP@0.25, as in Table 7). Compared to running
PointPainting (FP32) only on GPU, running PointSplit (INT8) on
both GPU and EdgeTPU provides 11.4x and 24.7X faster inference
in SUN RGB-D and Scannet V2, respectively. Overall, the results
suggest that in the upcoming multi-type accelerator era, 2D-3D
fusion-based 3D object detection, which used to be a complex task,
can run on an edge device without notable latency degradation.

Peak memory analysis. Figure 9 also shows peak memory usage
of each scheme. Note that while VoteNet (FP32) and PointPainting
(FP32) run on TensorFlow, other four schemes run on TensorFlow
Lite. Since TensorFlow Lite does not support CUDA, the GPU-only
environment utilizes TensorFlow.

PointPainting (FP32) on TensorFlow consumes more than 2.2
GB memory, which is one of the reasons why its latency is signifi-
cantly high. We evaluate another version of PointPainting (INT8)
on TensorFlow Lite by running the point manipulation operation
on GPU and the PointNet (INT8) and Deeplabv3+ (INT8) part on
CPU (i.e., GPU-CPU combination). The results show the impact
of using a lightweight software platform: running neural nets on
CPU with TensorFlow Lite is much faster and requires much less
memory than on GPU with TensorFlow. Lastly, VoteNet (INT8),
PointPainting (INT8), and PointSplit INT8) that run on the GPU-
EdgeTPU environment and TensorFlow Lite consume similar peak
memory. This verifies that compared to VoteNet and PointPaint-
ing, PointSplit’s parallel operation of GPU and EdgeTPU does not
sacrifice memory for boosting inference speed.
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Figure 10: Per-scene inference latency of VoteNet-based
PointPainting (INT8) and PointSplit (INT8) on various com-
binations of multiple processors. PointSplit reduces latency
regardless of hardware configurations.

More hardware configurations. Next, Figure 10 evaluates the
impact of PointSplit on various processor combinations in our plat-
form: (1) CPU-CPU, (2) CPU-EdgeTPU, (3) GPU-CPU, and (4) GPU-
EdgeTPU (i.e., our platform). In each combination, the first proces-
sor executes point manipulation (in PointNet++) and the second
processor executes neural nets, such as PointNet (in PointNet++),
Deeplabv3+ and voting/proposal modules (in VoteNet). The results
show that hardware configuration significantly impacts latency.
Specifically, using GPU as the first processor, instead of CPU, ac-
celerates point manipulation, which reduces latency for running
PointNet++. Using EdgeTPU as the second processor improves
latency of all the neural nets compared to using CPU. More impor-
tantly, the results verify that PointSplit reduces latency on every
hardware configuration compared to PointPainting (INT8). Specifi-
cally, PointSplit improves latency performance most significantly in
the CPU-CPU and CPU-EdgeTPU cases, 1.7X and 1.8X, respectively.
Note that PointPainting (INT8) provides significantly lower mAP
than PointSplit in Table 7.

Layer-wise analysis. To take a deeper look, Table 12 shows per-
layer latency of PointPainting (INT8) and PointNet++ (INT8) when
using GPU and EdgeTPU without parallelization. As the layer pro-
ceeds, computation on GPU (point manipulation) monotonically
decreases due to the smaller number of sampled points while that
on EdgeTPU (PointNet) first increases and decreases again due to
the trade-off between the input size and the number of channels.
The results verify that running point manipulation for SA-normal
on GPU while fusing 2D-3D information on EdgeTPU for SA-bias
significantly reduces latency. In addition, given that GPU needs
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Table 12: Per-layer latency of PointPainting (INT8) and Point-
Net++ (INT8) with sequential pipelining,.

Layers GPU  EdgeTPU
2D-3D fusion - 222 ms
SA1 199 ms 47 ms
SA2 52 ms 71 ms
SA3 25 ms 84 ms
SA4 20 ms 21 ms

Table 13: Latency in communication and computation on
GPU and EdgeTPU when PointSplit processes a single SUN
RGB-D scene. For the ease of measurement, the latency to
run DeeplabV3+ is not included and multithreading is not
used (SA-normal and SA-bias are executed sequentially).

Latency (ms)

Processor Communication Computation Total
GPU 80 248 328
EdgeTPU (estimates) 360 121 481

much more time than EdgeTPU at SA1, adding more layers to Point-
Net in SA1 and process the layers on EdgeTPU using the idle time
might improve accuracy without sacrificing latency.

Inter-processor communication. Utilizing multiple accelerators
requires data exchange between the accelerators, which brings a
concern of inter-processor communication overhead. Table 13 quan-
tifies the communication overhead by dividing PointSplit’s inference
latency on a SUN RGB-D scene into communication and computa-
tion latency. To focus on PointNet++ operation, we exclude 2D-3D
fusion. While latency on GPU is measured by NVIDIA profiler,
without such a tool, that on EdgeTPU is estimated in the following
way. We first measure the time required to execute each PointNet in
EdgeTPU, denoted as £, 40147, which includes latency for both com-
munication and computation: tptotal = tp,comp + p,comm- Then
we build another PointNet that has the same size of input, output,
and the number of parameters, but doubles the amount of compu-
tation. The time for executing the new PointNet model, tp3 total,
includes the same communication time but twice longer computa-
tion time: £y sora1 = 2 X tp,comp + tp,comm- Therefore, we estimate
computation latency on EdgeTPU as the difference between the two
measurements: tp.comp = Ip2,toral = Ip,total- Then the remainder is
regarded as communication latency: tp comm = tp.total = tp,comp-
The results verify that communication overhead on our platform
is significant indeed, taking up 54.4% of the total latency. Specifically,
communication time on EdgeTPU is 4.5 longer than that on GPU
due to the use of a slower channel, PCle Gen 2 x 1 (0.5 GB/s). With
a short glimpse, the significant communication overhead seems to
suggest that parallization among heterogeneous low-power pro-
cessors might have limited gain. However, the real implication is
opposite: once resource-constrained hardware evolves further and
solves the communication problem, which is actually happening
these days, PointSplit’s inference speed can be nearly doubled. With
the latest off-the-shelf hardware equipped with multi-type accel-
erators, such as Apple’s M1 architecture, we expect the field of
on-device ML to evolve further with parallel processing.
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7 DISCUSSION

In this section, we discuss applicability and limitations of PointSplit.
In addition, we present practical challenges (i.e., entry barriers) for
researching on-device 3D object detection, which we have expe-
rienced while developing PointSplit, the first framework for 100%
on-device 3D object detection with heterogeneous accelerators.

7.1 Generalization and Limitations

2D semantics-aware biased point sampling (§4.1)). Although
our biased point sampling method is implemented on PointNet++,
the idea of biased point sampling is not specific to PointNet++. Our
method can be directly applied to any DNN that utilizes farthest
point sampling (FPS) and easily adapted for other point sampling
techniques. A point sampling technique has its own metric (e.g.,
distance or density) and our technique is applied to the sampling
method by slightly modifying the metric with point semantics. For
example, in case of a density-based sampling technique [36], we
can simply boost a point’s density-based metric value if the point
is in a specific group that needs to be sampled more intensely. On
the other hand, there are 3D object detection networks that do not
exploit point sampling (i.e., voxel-based 3D object detectors [16, 40])
where our point sampling technique is not applicable.

PointNet++ parallelization (§4.2). It is important that our par-
allelization technique is not specific to VoteNet nor GroupFree3D
but their backbone PointNet++, which is one of the most widely
used 3D backbone networks. Many recent state-of-the-art models
for 3D object detection on SUN RGB-D (our primary dataset) and
ScannetV2 (our secondary dataset) employ PointNet++ as their
backbone [13, 38, 42, 48, 64, 67, 69, 72]. Specifically, out of top 10
ranked methods, 7 methods on SUN RGB-D and 6 methods on Scan-
netV2 use PointNet++, showing that PointNet++-based models are
dominating currently.

Role-based group-wise quantization (§4.3). The role-based group-
wise quantization is motivated by our observation that a layer’s
weight/activation distributions are impacted by what role each node
has. Therefore, the role-based grouping scheme can be applied to
any network layer that has multiple roles, not only for VoteNet. It
would be an interesting future work to evaluate the impact of role-
based grouping on other 3D object detectors. In addition, although
we focus on quantization in this work, investigating other compres-
sion approaches, such as knowledge distillation and pruning, can
be valuable future work.

7.2 Challenges in On-device 3D Object Detection

The field of 3D object detection has experienced significant growth
in recent years within the deep learning community, with a range
of datasets and model implementations now available. However,
the deployment of state-of-the-art models on resource-constrained
devices presents several nontrivial challenges.

Model size and complexity. Given that popular leaderboards
on 3D object detection primarily evaluate accuracy, many of the
top-ranked models rely on transformers [38, 48, 67, 69] or custom
modules [5, 13, 50, 62-64, 69] that are too heavy to run on resource-
constrained devices. For example, DeMF [69], which currently ranks
first on the SUN RGB-D leaderboard, reaches a peak GPU mem-
ory of 2.5 GB and requires 173 GFLOPS for its 2D detector with
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deformable attention [74]. Effective model compression techniques
must therefore be developed in order to enable the deployment of
the latest models on edge devices.

Implementation burden. Although the latest 3D object detec-
tors are implemented using Pytorch, which consumes significant
resources, they are not currently implemented on edge-friendly
platforms, such as TensorFlow Lite and MNN [29]. Furthermore,
many state-of-the-art models rely on recent software packages,
such as mmdetection3d and Minkowski, which are not currently
supported by edge devices. As a result, significant time and effort
is required to re-implement state-of-the-art models on lightweight
platforms that perform comparably to their Pytorch versions. We
believe that our open implementation of VoteNet on TensorFlow
Lite can accelerate future research on on-device 3D object detection.

8 CONCLUSION

This work began when we observed the emergence of multi-type
low-power accelerators with different pros and cons. We envisioned
that in the era of multi-type accelerators, a new class of intelligent
tasks that used to be too heavy can be viable in the on-device
ML regime when these accelerators are utilized synergistically.
To investigate the potential, we have built a low-power hardware
platform including both GPU and NPU, and studied on-device 3D
object detection with 2D-3D information fusion.

Specifically, we propose PointSplit, a novel 3D object detec-
tion framework that provides system-algorithm joint optimization.
First, PointSplit catches the difference between point manipulation
and neural net operation in a representative 3D feature extrac-
tor (PoinNet++), executing the former on GPU and the latter on
NPU. Second, PointSplit creates two separate but synergistic feature
extraction pipelines by augmenting a point cloud scene with 2D
semantic information (i.e., semantics-aware biased point sampling).
The PointNet++ structure is further optimized to maximize accu-
racy and efficiency in the PointSplit framework. Third, PointSplit
contains role-based group-wise quantization that quantizes a 3D
object detector with a small number of parameters without sac-
rificing accuracy. Our experiments demonstrate the effectiveness
of PointSplit in terms of both accuracy and latency. We believe
that this work, by showing the potential of recently available edge
devices equipped with heterogeneous low-power processors, and
by providing open implementation, can inspire other researchers to
run more various complex tasks on the new class of edge devices.
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