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Abstract
Computer vision applications predict on digital images

acquired by a camera from physical scenes through light.
However, conventional robustness benchmarks rely on per-
turbations in digitized images, diverging from distribution
shifts occurring in the image acquisition process. To bridge
this gap, we introduce a new distribution shift dataset,
ImageNet-ES, comprising variations in environmental and
camera sensor factors by directly capturing 202k images
with a real camera in a controllable testbed. With the
new dataset, we evaluate out-of-distribution (OOD) detec-
tion and model robustness. We find that existing OOD de-
tection methods do not cope with the covariate shifts in
ImageNet-ES, implying that the definition and detection of
OOD should be revisited to embrace real-world distribu-
tion shifts. We also observe that the model becomes more
robust in both ImageNet-C and -ES by learning environ-
ment and sensor variations in addition to existing digi-
tal augmentations. Lastly, our results suggest that effec-
tive shift mitigation via camera sensor control can sig-
nificantly improve performance without increasing model
size. With these findings, our benchmark may aid future
research on robustness, OOD, and camera sensor control
for computer vision. Our code and dataset are available at
https://github.com/Edw2n/ImageNet-ES.

1. Introduction

The human vision system processes visual information by
capturing light through the eyes and interpreting it within
the brain. While proper training of our brains is undoubt-
edly crucial, addressing eyesight or light-related challenges
necessitates equipping ourselves with customized- or sun-
glasses rather than relying solely on cognitive enhancement.

Similarly, in many computer vision frameworks, as de-
picted in Figure 1a, a camera serves as the ‘eyes,’ capturing
authentic scenes through the play of light and generating
digital images. These images are then interpreted by a deep
neural network (i.e. the brain), as illustrated in Figure 1b.
Continuous efforts towards improving AI systems to match

(a) Real-world image acquisition process. Variations in the environmental
and camera sensor factors can cause significant covariate shifts in the ac-
quired image.

(b) Real-world image prediction pipeline with existing perturbation bench-
marks at each phase. ImageNet-ES first investigates the environment and
sensor domains directly, instead of mimicking via digital perturbation.

Figure 1. Motivation and contribution of ImageNet-ES, the first
benchmark on the necessary but unexplored faces of image co-
variate shifts: environment and camera sensor domains.

the robustness of the human vision system predominantly
focus on the ‘brain’ component. Existing robustness bench-
marks evaluate the resilience of model predictions against
perturbations in digitized images [7, 10, 20, 25]. Vari-
ous techniques, such as domain generalization/adaptation
and out-of-distribution (OOD) detection, have refined deep
learning models to handle distribution shifts [1, 6, 11, 13,
15, 19, 21, 22, 26, 30, 31, 37, 42, 42].

However, the implications of distribution shifts resulting
from the image acquisition process (i.e. eyes), caused by
variations in real-world light and camera sensor operations,
remain unexplored. The absence of a benchmark introduces
uncertainty regarding the generalizability of observed ro-
bustness in synthetic data to real-world applications. More-
over, the synergistic interplay between the camera sensor
and the model has not been investigated. Therefore, current
approaches may risk inefficiency by attempting to address
eyesight/light problems through over-training the brain.

https://github.com/Edw2n/ImageNet-ES


Figure 2. Representative Examples of ImageNet-ES. In contrast to conventional robustness benchmarks that
rely on digital perturbations, we directly capture 202k images by using a real camera in a controllable testbed.
The dataset presents a wide range of covariate shifts caused by variations in light and camera sensor factors.

Figure 3. Robustness
improvement scenario to
cover real-world C-OOD

This work aims to narrow the gap between synthetic and
real-world data by investigating the impact of environmen-
tal and camera sensor factors. Instead of relying on dig-
ital perturbation, we construct a controllable testbed, ES-
Studio. This testbed allows us to directly capture images us-
ing a physical camera with varying sensor parameters (ISO,
shutter speed and aperture) and different light conditions
(on/off), resulting in a novel dataset called ImageNet-ES.

ImageNet-ES consists of 202k images covariate-shifted
from 2,000 samples in TinyImageNet [38]. For example,
Figure 2 shows 56 variations for a single sample, captured
in ES-Studio under different light and camera sensor set-
tings. These example images illustrate a broad spectrum
of distribution shifts, suggesting that model robustness ob-
served in conventional benchmarks might not necessarily
generalize to our ImageNet-ES benchmark. Furthermore,
some of the captured images even lose essential visual fea-
tures due to severe perturbation, making them impractical
for model prediction. This implies that, as shown in Fig-
ure 3, restricting distribution shifts in the image acquisition
phase via camera sensor control can be more practical than
solely focusing on model improvement.

With the ImageNet-ES dataset, we conduct an extensive
empirical study on OOD detection and domain generaliza-
tion. Furthermore, we explore the potential of camera sen-
sor control in addressing real-world distribution shifts. Our
study unveils a series of noteworthy findings as follows:

• OOD definition: Covariate-shifted data (C-OOD) have
been categorized entirely as either OOD or in-distribution
(ID). However, C-OOD data in ImageNet-ES exhibit
widespread OOD scores in most metrics, including both

ID and OOD. Model-Specific OOD (MS-OOD) [1] is
more proper for fine-grained labeling of our C-OOD data.

• OOD detection: State-of-the-art (SOTA) OOD detection
methods, focusing on distinguishing semantic shifts, fal-
ter in ImageNet-ES. OOD detection should be improved
to incorporate real-world covariate shifts together.

• Domain generalization: Existing digital augmenta-
tions do not incorporate distribution shifts in ImageNet-
ES. Learning environment/sensor-domain perturbations
in ImageNet-ES with existing augmentations improves
model robustness, even in conventional benchmarks.

• Potential of sensor control: Camera sensor control can
significantly improve prediction accuracy by mitigating
distribution shifts. With sensor control, ResNet can per-
form comparably to a much heavier transformer model.

• Direction of sensor control: High-quality images in
terms of model prediction do not necessarily align with
human aesthetics but rather with what the model learns
from training data. Sensor control should be grounded in
the features that the model (not the human) prefers.
Overall, future research on OOD detection and model ro-

bustness requires more thorough evaluations, including en-
vironmental and camera sensor variations. Furthermore, it
is valuable to explore camera sensor control so that acquired
images contain more features preferred by the model.

2. Related Work

2.1. Robustness Benchmarks

A number of benchmarks have employed various digital
perturbations to assess image classifier robustness or OOD



detection methods. Notably, ImageNet-C and -P [10] sim-
ulate environmental and adversarial perturbations through
blur, noise, brightness, etc. ImageNet-A and -O [14]
limit spurious cues using adversarial perturbations. Several
datasets utilize visual renditions to change real scenes, such
as art, cartoons, patterns, toys, paintings, etc. [13, 29, 36].
SVSF [13] or ImageNet-E [20] changes camera views or
imange compositions.

While these benchmarks aim to incorporate real-world
distribution shifts, such as camera framing, their approaches
are limited to the indirect simulation of actual shifts via
perturbing already-acquired digital images. Recent studies
have highlighted that SOTA OOD detection methods face
challenges due to a lack of knowledge about the real-world
OOD distributions [28] and experience performance degra-
dation in near-OOD, shifted benchmarks [18]. Building
on prior work, our ImageNet-ES dataset directly modifies
physical light and camera sensor parameters, which provide
another type of real-world distribution shifts and demystify
the relationship between digital and physical manipulations.

2.2. Out-of-Distribution (OOD) Detection

Out-of-distribution (OOD) detection is the task of identify-
ing test data that come from a distribution different from
the distribution of training data, due to either semantic shift
(S-OOD) or covariate shift (C-OOD) [18].

OOD studies have focused on detecting samples with
semantic shifts (S-OOD) that do not belong to any of the
classes present in the training set. A number of methods de-
termine the OOD score based on the decision-making com-
ponent of classifiers [11, 15, 21, 22]. These techniques are
more robust when class-agnostic information needs to be
carefully considered, but vulnerable to significant semantic
shifts or overconfidence issues[30, 37]. To alleviate these
problems, other methods calculate the OOD score based on
features the model learned [6, 19, 30, 31, 37]. Rigorous ef-
forts in this area have achieved nearly perfect performance.

However, prior work has relatively unexplored how to
handle covariate-shifted (C-OOD) samples. A handful of
studies have considered entire C-OOD examples as in-
distribution (ID) to enhance classifier robustness against co-
variate shifts [39, 40, 42]. Some studies have taken oppo-
site approaches, treating all C-OOD samples as OOD to
make OOD detection more generalizable to non-semantic
shifts [16]. To address the problem of the rough treatment
of entire covariate-shifted data as ID or OOD, more re-
cent studies provide fine-grained categorization of C-OOD
samples into ID and OOD, based on their own defini-
tions [1, 33]. Notably, Averly and Chao have proposed
a unified criterion that incorporates both S-OOD and C-
OOD data based on model prediction results, called Model-
Specific OOD (MS-OOD) [1]. MS-OOD reveals the prob-
lems of existing methods but does not provide a solution.

Looking forward, OOD detection should be improved to
reliably handle both S-OOD and C-OOD data with a well-
defined OOD score and detection method, which requires
support from proper benchmarks. ImageNet-ES can con-
tribute to this aspect by providing realistic C-OOD samples.

2.3. Domain Generalization

Domain generalization focuses on improving the robustness
of models to distribution shifts in testing domains. To this
end, Hendrycks et al. identified that using larger models and
artificial data augmentations (called DeepAugment) can im-
prove model robustness [13]. While many augmentation
techniques [5, 12, 41] have shown to improve the robust-
ness, their evaluation scope is limited to digital corruptions.
More recently, foundation models have demonstrated suc-
cess in learning effective feature representations through ar-
chitectural changes [24], discriminative self-supervised pre-
training [9, 26, 44], or large uncurated data [26].

However, prior work has focused on digital distribution
shifts (e.g. pixelate or gaussian noise etc.), scene and cam-
era composition shifts. On the other hand, our ImageNet-ES
addresses other types of distributional shifts, such as those
arising from the image acquisition process.

3. Background
As illustrated in Fig. 1, an image is influenced by three pri-
mary aspects at the point of its capture. Firstly, the term
composition pertains to the arrangement, organization, and
layout of visual elements within the frame of the image.
Composition is subject to dynamic alterations caused by
the movement of objects, addition or removal of objects, or
other modifications. Camera operations, such as zooming
or tilting, can also impact the resulting image. Secondly, en-
vironment signifies lighting conditions. For example, light
can be scattered by dust or smoke, leading to image blur-
ring. The position and intensity of light can also affect the
image’s quality. Finally, camera sensor generates an image
from the light. The captured image can dynamically fluctu-
ate according to sensor parameter settings.

This work focuses on variations in environmental and
sensor factors without changing the composition.

3.1. Camera Operation for Image Acquisition

Before digitization, image variations can be introduced dur-
ing the camera’s acquisition process, which involves the fol-
lowing steps: (1) light reception, (2) sensor conversion, (3)
image signal processing, and (4) final image creation.

Firstly, light is captured from the scene and environment.
This light, the primary source of image variation in photog-
raphy, plays a crucial role in determining the quality and
characteristics of the image. Next, the captured light hits
the camera sensor, which converts the light into an electri-
cal signal. The types and settings of the sensor can influence



the image, with different sensors responding differently to
the same light conditions. The electrical signal undergoes
processing by the camera’s internal systems. This process-
ing commonly includes operations such as noise reduction,
white balance adjustment, and color grading. Finally, the
processed signal is converted into an image.

While image signal processing techniques can introduce
various perturbations and contribute to the quality improve-
ment of the final image, these results are fundamentally
bounded by the original electrical signal generated by the
sensor from the lighting conditions. Therefore, despite nu-
merous existing perturbations through post-processing, in-
vestigating the impact of environmental and sensor factors
has additional value.

3.2. Light Factor in Environment Domain

In the environmental domain, changes in lighting condi-
tions significantly impact the captured image. For exam-
ple, an object photographed under bright overhead lighting
may cast a strong shadow, altering the object’s appearance.
Similarly, an object photographed in low light may lack suf-
ficient detail. Furthermore, changes in the color of the light,
such as transitioning from daylight to artificial light, can
affect how colors appear in the image. These variations
present challenges for deep learning models, which often
rely on consistent lighting for accurate image recognition.

3.3. Light Factor in Camera Sensor Domain

The camera sensor has three main parameters, ISO, shutter
speed, and aperture, which influence light levels in an image
while also impacting various aspects of the captured scene.

• ISO adjusts the sensitivity of the camera sensor to light.
Higher ISO values increase brightness but may introduce
additional noise to the image.

• Shutter speed governs the duration that the camera’s
shutter remains open. Slower shutter speed allows more
light to reach the sensor, resulting in a brighter image but
also motion blur. Conversely, faster shutter speed can pro-
duce a darker image and freeze motion.

• Aperture determines the size of the lens opening, regu-
lating light entry and affecting the image’s depth of field.
A larger aperture brightens the image but leads to a shal-
lower depth of field, concentrating focus on a limited por-
tion of the scene.

While manual control of these parameters is possible,
most cameras are equipped with automatic exposure con-
trol. The auto exposure function calculates the optimal ex-
posure settings for a given scene. However, it is important to
note that the optimal settings are for human aesthetic, which
may not align with those optimal for model predictions.

Figure 4. Illustration of the ES-Studio setup

4. ES-Studio and ImageNet-ES
To compensate the missing perturbations in current
datasets, we construct a new testbed, ES-Studio
(Environment and camera Sensor perturbation Stu-
dio). It can control physical light and camera sensor
parameters during data collection. Utilizing ES-Studio,
we compile ImageNet-ES, a novel dataset comprising
202,000 samples of perturbed data from the environment
and camera sensor domains.

4.1. ES-Studio Design Considerations and Setup

In constructing our data collection studio, we prioritize two
main considerations: 1) ensuring reproducibility and 2) cap-
turing real-world perturbations, particularly those related to
light factors in both the environment and camera sensor do-
mains. Specifically, being the first effort to gather such real-
world perturbations, it is crucial for our data collection pro-
cess to be reproducible, facilitating and promoting future
research in this area. To achieve this, we have employed
ES-Studio, providing individual control over environment
and sensor parameters involved in image acquisition.

The construction of ES-Studio is depicted in Figure 4.
First, we established a completely dark room to eliminate
any external light during the data collection process. The
room is equipped with four main components: (1) a large
screen to display the reference dataset, (2) a camera with ad-
justable parameters for ISO, shutter speed, and aperture, (3)
two ceiling lamps to manipulate environmental light, and
(4) a desktop and Wi-Fi network to manage above compo-
nents. More details of ES-Studio settings are in Appendix.

4.2. ImageNet-ES dataset

4.2.1 Sampling Process for Target Datasets

We choose Tiny-ImageNet [38], a 200-class subset derived
from ImageNet-1K, as our reference dataset. This dataset
not only provides a diverse range of categories but also de-
mands less computational power for experiments compared
to ImageNet-1K. We randomly select ten images from each
category in the validation set of Tiny-ImageNet. Subse-
quently, we divide these images into two halves, utilizing



Table 1. Environment and Sensor specifics of ImageNet-ES collection
Dataset Original samples Light Camera sensor ISO Shutter speed Aperture Captured images

Validation 1,000 On/Off Auto exposure (5 shots) Auto Auto Auto 10,000
(5 samples/class) Manual (64 options) 200/800/3200/12800 (0”4’)/(1/20’)/(1/160’)/(1/1250’) f5.0/f9.0/f13/f20 128,000

Test 1,000 On/Off Auto exposure (5 shots) Auto Auto Auto 10,000
(5 samples/class) Manual (27 options) 250/2000/16000 (1/4’)/(1/60’)/(1/1000’) f5.0/f9.0/f16 54,000

the first five for validation and the remaining five for test-
ing purposes. To ensure visual fidelity, each sampled image
maintains a resolution greater than 375 × 500 pixels, pre-
venting distortion when displayed on the screen. In total,
we systematically sample 2,000 images.

4.2.2 Data Collection

Table 1 provides a comprehensive overview of the collected
data. We display each sampled reference image on the
screen and take its picture multiple times while varying the
environmental and camera sensor factors.

We consider two options for the environmental factor:
lights in the “on” and “off” states. For camera sensor
control, we use both auto exposure and manual parameter
settings. Under auto exposure, the camera autonomously
determines each sensor parameter. Given that the auto-
controlled parameters can be different at each time, we
capture each sample five times to observe the average ef-
fect. For manual parameter setting, we use four differ-
ent options for ISO, shutter and aperture during the vali-
dation split, and three options during the test split, lead-
ing to 64/27 variations in the validation/test split. To en-
sure the integrity of our data collection process, we imple-
mented pauses between setting changes. Specifically, we
introduced a one/seven/ten-second pause between each pa-
rameter option, between changes in light options, and be-
tween sample image changes, respectively. A detailed log
is recorded for each image, serving debugging purposes.

4.2.3 Data Processing and Validation

The next step involves cropping the valid image area from
the collected images. The valid image area is determined
through a systematic process: First, we display a visually
discriminative reference image on the screen and capture
the screen with the camera. We extract crucial information
for the captured image, including the left top point, width
and height of the reference image. Then, for other images,
we determine the valid area of each image by using the dig-
itally calculated ratio of each image to the reference image.
Finally, we set the padding to the determined valid area and
crop the captured image accordingly.

To validate the ImageNet-ES collection, we conduct a
subjective validation approach. For each reference sample,
we aggregate all images taken under different settings and
concatenate them into a single image along with the original
sample. This composite image is then reviewed by three in-
dividuals to ensure that all images are captured consistently.

The validation process also confirms that the collected im-
ages align accurately with the original image.

5. Experiments
We design experiments to evaluate the impact of distribu-
tion shifts within the environmental and camera sensor do-
mains. The experiments include widely used methods for
OOD detection and domain generalization.

5.1. OOD Detection

We validate OOD detection techniques on ImageNet-ES:
MSP [11], ViM [37] and ODIN [21]. They report SOTA
performance and serve as baseline methods in recent OOD
studies [1, 42]. Likewise, EfficientNet-B0 [32] is se-
lected as the underlying model for OOD detection, given its
widespread use in OOD studies. Training details and evalu-
ations for other models and OOD methods are in Appendix.

5.1.1 Evaluation of OOD Definition

Most OOD detection techniques are developed under a
framework that focuses on detecting samples with seman-
tic shifts (S-OOD). Under this framework, all samples from
ImageNet-ES (i.e. C-OOD data) should be classified as ei-
ther OOD or In-Distribution (ID) in their entirety. To assess
the validity of the semantics-centric OOD definition under
ImageNet-ES, we analyze the distribution of OOD scores
on ID (Tiny-ImageNet [38]), S-OOD (Texture-O [4]) and
ImageNet-ES (C-OOD) datasets, as in Figure 5a. While
OOD detection techniques provide clearly distinguished
OOD scores for ID (blue region) and S-OOD (red region),
the scores on ImageNet-ES (green region) are widely spread
across the entire spectrum between OOD and ID. The re-
sults show that treating entire C-OOD data in ImageNet-ES
as either ID or OOD leads to significant detection errors. It
is risky to directly apply the semantics-centric framework
in the presence of C-OOD data.

We also evaluate an alternative framework, called MS-
OOD (Model-Specific OOD) [1]. In this framework, OOD
is defined by considering model-specific acceptance (MS-
A) or rejection (MS-R): (1) MS-A includes ID and C-OOD
samples that are correctly classified by the model, denoted
as ID+ and C-OOD+. (2) On the other hand, MS-R in-
cludes all S-OOD samples, as well as ID and C-OOD sam-
ples that are misclassified by the model, denoted as ID− and
C-OOD−. Within this MS-OOD framework, the objective
of OOD detection methods is to accept correctly predicted
examples and reject incorrectly predicted examples.
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Figure 5. OOD score distribution with semantics-focused and MS-
OOD frameworks. Tiny-ImageNet [38] and Texture [4] are used
for the ID and S-OOD datasets, respectively. ImageNet-ES serves
as a C-OOD dataset.
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Figure 6. Each point represents the OOD score measured on the
single parameter setting of ImageNet-ES.

Figure 5b presents the distribution of OOD scores mea-
sured on ID and ImageNet-ES (C-OOD) datasets under the
MS-OOD framework. ViM [37], the current SOTA method
for S-OOD detection, still exhibits a significant overlapping
area between ImageNet-ES+ and ImageNet-ES−. This con-
firms that methods developed to detect S-OOD cannot han-
dle C-OOD data properly solely by modifying the underly-
ing framework. On the other hand, MSP, an older method
usually serving as a baseline, shows a clearer score separa-
tion between ImageNet-ES+ and ImageNet-ES−.

5.1.2 Evaluation of OOD Detection Methods
Next, we evaluate 54 manual environmental/sensor varia-
tions in the ImageNet-ES test set in terms of classification
accuracy and OOD scores. The OOD scores are obtained
using five methods (MSP [11], ODIN [21], ReAct [30],
ASH [6] and ViM [37]) within the MS-OOD framework.

Figure 6 showcases both accuracy and OOD scores
for each setting, averaged over 1,000 samples out of 200
classes. Given that the MS-OOD framework defines OOD
based on model prediction results, the OOD score is ex-
pected to increase with classification accuracy. Our results
reveal that the older methods, MSP [11] and ODIN [21],
provide relatively desirable correlation between accuracy
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Figure 7. Performance of OOD methods with C-OOD and S-
OOD. (a) Each point is the F1 score measured on a parameter set-
ting of ImageNet-ES. (b) N1: SSB-hard [35], N2: NINCO [3], F1:
iNaturalist [34], F2: Texture [4], F3: Openimage-O [37]

and OOD score. In contrast, more recent methods (ASH [6],
ReAct [30] and ViM [37]) demonstrate a weaker relation-
ship between accuracy and OOD score. Particularly, ViM
shows a rapid increase in OOD scores as accuracy ap-
proaches zero; ViM tends to accept numerous samples as
ID even when they are misclassified by the model.

In addition, Figure 7a shows the OOD detection per-
formance for each environmental/sensor setting of the
ImageNet-ES test set, in terms of F1 score used in [1]. The
results reveal that MSP and its advanced versions, ODIN
and ReAct, consistently outperform ViM and ASH. Mean-
while the latest ViM and ASH emerge as the least effective
among the five. The detection errors observed in ViM can
be attributed to its inability to recognize unseen features in
C-OOD. A more thorough explanation is in Appendix.

For further insight, Figure 7b employs five S-OOD dat-
sets as benchmarks, comprising two for near-OOD (SSB-
hard [35], NINCO [3]) and three for far-OOD (iNatural-
ist [34], Texture [4], and Openimage-O [37]). In contrast
to the results in ImageNet-ES (Figure 7a), Figure 7b under-
scores that ViM provides superior performance compared to
MSP, ODIN, ReAct and ASH, confirming the effectiveness
of latest methods in detecting semantic shifts.

Overall, our findings suggest that the evolution of OOD
detection methods over recent years might have been biased
towards S-OOD handling, potentially retrograding in terms
of C-OOD handling. As of now, there is no single method
that excels in both C-OOD and S-OOD detection. Given
the importance of addressing covariate shifts in real-world
applications, future research on OOD detection should inte-
grate and advance both S-OOD and C-OOD aspects.

5.2. Domain Generalization

In this section, we investigate the impact of domain gener-
alization techniques on enhancing the robustness in the en-
vironment and sensor domains. As a baseline, we finetune
ResNet-50 using only the subset of ImageNet (IN) that pre-
cisely matches the images corresponding to the validation
split from ImageNet-ES, incorporating composition-related
augmentations such as crop, resize and flip.

For comparison schemes, we employ both basic and ad-
vanced digital augmentations. Basic augmentations include



Table 2. Evaluation with different robustness enhancing strategies.
The result is based on ResNet-50. (IN: ImageNet)

ID Comp.aug Basic Advanced Incl. Eval dataset
digital aug digital aug ImageNet-ES IN IN-C ImageNet-ES

1 ✓ 85.8 51.0 49.6
2 ✓ ✓ 85.8 51.7 50.4
3 ✓ ✓ ✓ 85.5 57.4 49.1
4 ✓ ✓ 86.0 51.8 55.8
5 ✓ ✓ ✓ 85.8 51.4 54.5
6 ✓ ✓ ✓ ✓ 84.0 57.9 53.7

color-jitter, solarize and posterize, while advanced aug-
mentations include DeepAugment [13] and AugMix [12].
To explore the potential of finetuning with our real-world
perturbations, we replace half of the finetuning images
with randomly sampled images from the validation set of
ImageNet-ES. We exclude some images that are too far dis-
torted to be identifiable, utilizing an image similarity metric
LPIPS [43]. We evaluate each finetuning result on the test
sets of IN, IN-C [10] and ImageNet-ES. Since ImageNet-ES
contains only a subset of images from 200 classes from IN,
we use the same subset of IN and IN-C corresponding to the
test set of ImageNet-ES for fair comparison.

The evaluation results are summarized in Table 2. Exper-
iment 2 shows that basic augmentations lead to improved
accuracy in both IN-C and ImageNet-ES. However, our
findings in experiment 3 contradict prior work [12, 13].
While more aggressive augmentations, such as AugMix and
DeepAugment, significantly improve robustness on IN-C,
these strategies result in performance degradation when pre-
dicting images with our real-world perturbations.

Experiments 4 to 6 evaluate the impact of learning aug-
mentations in environmental and sensor domains in addi-
tion to conventional digital augmentations. Learning these
real-world perturbations consistently improves robustness
in ImageNet-ES, demonstrating its effectiveness in real-
world applications. Furthermore, experiments 4 and 6 show
that adopting environmental/sensor augmentations further
improves robustness on the conventional benchmark IN-C.

In summary, these results verify that augmentations in
the environmental and sensor domains can provide addi-
tional valuable information absent in conventional augmen-
tation schemes. The impact becomes more significant in
real-world applications involving cameras.

5.3. Sensor Parameter Control

To investigate the impact of sensor parameter control on
model performance, we evaluate the performance of three
different subsets of ImageNet-ES test split. Auto exposure
includes 10,000 samples captured with the default auto ex-
posure (AE) setting. All params includes 54,000 samples
captured with 27 different manual parameters settings. Best
includes 2,000 samples captured with the manual parameter
setting that provides the best accuracy among the test split.

We employ several models for generalizability. The
baseline is ResNet-50 [8], trained with a vanilla training

Table 3. Evaluation of various models on ImageNet-ES. (IN: Ima-
geNet, AE: Auto exposure)

Model Num. Pretraining DG method IN ImageNet-ES
Params Dataset AE All params Best

ResNet-50 [8] 26M
IN-1K - 86.3 32.2 50.2 80.1

IN-21K DeepAugment [13] 87.0 53.3 61.4 84.0+AugMix [12]
ResNet-152 [8] 60M IN-1K - 87.6 41.1 54.3 83.3

Efficientnet-B0 [32] 5M IN-1K - 88.1 51.4 58.1 83.8
Efficientnet-B3 [32] 12M IN-1K - 88.3 62.0 66.2 86.8

SwinV2-T [23] 28M IN-1K - 90.7 54.2 63.1 86.8
SwinV2-B [23] 88M IN-1K - 92.0 60.1 65.6 89.0

OpenCLIP-b [17] 87M LAION Text-guided pretrain 94.3 66.3 71.0 92.7
OpenCLIP-h [17] 632M LAION Text-guided pretrain 94.7 79.1 77.6 94.7
DINOv2-b [26] 90M LVD-142M Dataset curation 93.6 74.5 73.9 92.2
DINOv2-g [26] 1.1B LVD-142M Dataset curation 94.7 84.3 79.6 94.2

scheme on ImageNet (IN)-1K. To explore whether well-
configured sensor parameters could enhance the model per-
formance to the level of domain-generalizated (DG) mod-
els, we also evaluate ResNet-50 trained on IN-21K with
DeepAugment [13] and AugMix [12]. In addition, we ex-
amine whether a larger model demonstrates more robust-
ness by evaluating ResNet-152.

Furthermore, we employ EfficientNet-B0/B3 [32] to test
the lightweight model architecture’s validity on ImageNet-
ES. SwinV2-T/B [23] are chosen as representative models
from transformer-based architecture, known for its robust-
ness [2, 10]. OpenCLIP-b/h [17] and DINOv2-b/g [26] are
selected as domain-generalized versions of SwinV2. All
model weights are obtained from PyTorch [27], except for
the DG version of ResNet-50, which is released in [13].

5.3.1 Potential of Sensor Control

Table 3 summarizes the results. Firstly, DG techniques
and pretraining on larger datasets consistently improve ro-
bustness on ImageNet-ES. For instance, in the All params
case, DG version of ResNet-50 improves the test accuracy
to plain ResNet-50 by 11.2.

In addition, sensor parameter tuning turns out to be as
important as domain generalization and model size. First,
the auto exposure option degrades performance of all mod-
els compared to the accuracy on original images (IN); the
current auto exposure does not provide optimal parameters
for model predictions. Conversely, the Best case reveals
that with well-tuned sensor parameters, performance can be
improved remarkably. The Best case improves prediction
accuracy over the Auto exposure case by 9.9∼47.9 and the
All params case by 14.6∼29.9. Surprisingly, EfficientNet-
B0 with the Best even outperforms OpenCLIP-h in the Auto
exposure and All params cases, despite OpenCLIP-h having
around 120× more parameters, learning from 400× more
training data and employing domain generalization.

These findings suggest that research might have over-
emphasized model improvement, possibly overlooking the
importance of proper input data generation. However, mit-
igating distribution shifts through sensor control proves to
be valuable regardless of model size and DG techniques.
The performance gain from sensor control can even surpass



Table 4. Impact of environmental factor. The difference is calcu-
lated between the accuracy measured when light is on and off. We
provide the difference for auto exposure setting and the maximum
of difference amongst all manual parameter settings. More details
could be found in Appendix.

Model ResNet-50 ResNet-152 SwinV2-B DINOv2

Auto exposure 4.4 3.0 4.3 2.4
Max. of all params 11.7 14.9 15.7 18.2

Figure 8. Qualitative results of ImageNet-ES: AE: Auto Exposure,
Best/Worst: Sampled images from the parameter setting whose
accuracy is highest 5 or lowest 5. Accuracy on ResNet-50 is also
presented for each group.

that achieved through larger model size, more training data,
advanced architectures, and DG techniques. If designed ef-
ficiently, sensor control can be an enabling factor of mobile
applications where computational resources are limited.

5.3.2 Direction of Sensor Control

Table 4 summarizes the impact of lighting conditions (on
and off) on model accuracy. Specifically, the table shows
the difference in the model accuracy caused by changes
in lighting when using the same sensor parameter option.
Notably, the auto-exposure option fails to ensure consis-
tent model performance, showing accuracy differences of
2.4∼4.4 across diverse models. Moreover, manual config-
uration of sensor parameters is also susceptible to the im-
pact of environmental variables, resulting in an accuracy
variance of up to 18.2. Our results pose a challenge for
future research on sensor control. It should focus on adap-
tively controlling parameters based on given environments,
instead of attempting to find universally optimal parameters.

To obtain further insights into sensor control, we per-
form a qualitative analysis on ImageNet-ES, as described in
Figure 8. Interestingly, these examples show that images vi-
sually appealing to humans do not necessarily yield the best
prediction outcomes. Images captured with the Best op-
tions sometimes appear significantly lighter, posing a chal-
lenge for human observers to discern the underlying seman-
tic information. Conversely, some images captured with the
worst-performing options are more conducive to semantic
interpretation by humans. Lastly, images captured by con-
trolled parameters are occasionally predicted more accu-

rately than the original samples. These results imply that
sensor control research should prioritize features that the
model can leverage effectively, rather than relying solely on
human intuition. A more detailed examination of the cam-
era parameters is in Appendix.

6. Conclusion and Future Work
In this study, we investigated distribution shifts result-

ing from perturbations in both environmental and sensor do-
mains. To achieve this goal, we established a controllable
testbed, named ES-Studio, for image acquisition across di-
verse environmental and camera sensor configurations. We
curated a new dataset of 202k images, called ImageNet-ES.

Employing ImageNet-ES, we have conducted compre-
hensive studies in OOD detection, domain generalization
and camera sensor control. With respect to OOD detec-
tion, our findings indicated limitations in the widely used
semantics-centric framework. We proposed that OOD de-
tection should extend its scope to incorporate both S-OOD
and C-OOD. Regarding domain generalization, we demon-
strated that environmental and sensor-related augmenta-
tions offer additional useful information to the model, im-
proving robustness in both conventional and ImageNet-ES
benchmarks. Finally, we discovered that well-tuned sensor
parameters can enable a lightweight, basic model to per-
form comparably to or better than more advanced models.
Sensor control necessitates a model-centric design instead
of relying solely on human aesthetics. We hope that these
insights will inspire future research and ImageNet-ES will
be utilized in addressing real-world distribution shifts.

Limitations and Future Work. Taking photos of displays
in ES-Studio is reproducible, controllable, and scalable, but
it might not fully consider the interaction between real 3D
objects and light sources, and the non-luminous properties
of real objects. It would be more realistic to replace displays
with real objects or printed photos. Sensor control can sup-
port applications like autonomous driving and surveillance
cameras, which require image capture in various environ-
ments. But since it primarily handles physical light, it needs
to be combined with digital post-processing. For practical
training of a neural net for sensor control, gradients need to
be computed without extra photos.
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