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Abstract 
 
 
Study objectives: Polysomnography (PSG) is the current gold standard for sleep staging but 
requires laboratory equipment, multiple sensors, and labor-intensive manual scoring. We 
developed DistillSleep, a single-channel EEG framework that delivers accurate, real-time, and 
interpretable sleep staging on resource-constrained devices. 
 
Methods: DistillSleep consists of (1) a high-capacity teacher model and (2) a 109 k-parameter 
student model designed for edge deployment. Both incorporate a Multi-Wavelength Pyramid 
module and Transformer-based architecture to capture intra- and inter-epoch features. Feature- 
and prediction-level knowledge distillation transfers the teacher’s expertise to the student. 
Training and evaluation used >10,000 overnight recordings from six cohorts (SHHS1, PhysioNet 
2018, DCSM, KISS, Sleep-EDF, ISRUC), following AASM guidelines. Performance was assessed 
with Macro-F1. 
 
Results: The teacher achieved state-of-the-art Macro-F1 scores (SHHS1 81.1%, PhysioNet 
78.9%, DCSM 81.2%, KISS 80.0%) and provided frequency-resolved saliency maps, inter-epoch 
context and well-calibrated confidence (ECE 0.07). The student maintained competitive accuracy 
(up to 79.7% Macro-F1) while executing <10 ms per 30-second epoch on three embedded 
platforms (Raspberry Pi 4, Jetson orin nano, Coral dev board), reducing computational load 115-
fold versus the best prior method (SleePyCo).  
Interpretability was transferred intact to the student, offering clinicians frequency-band importance 
and inter-epoch context visualizations, and calibration was further improved by 2.7Ｘ. 
 
Conclusions: DistillSleep combines expert-level accuracy, millisecond-scale latency, and 
transparent decision logic in a single-channel EEG form factor. These capabilities pave the way 
for point-of-care diagnostics, same-night therapy titration, and large-scale home monitoring, 
expanding the reach of sleep medicine while retaining clinical trust. 
 
 
 

Keywords 
Automatic sleep staging, Knowledge distillation, Interpretable deep learning, On-device AI, 
Machine Learning, EEG analysis, Big data  
  



4 / 30 
 

 

Statement of Significance 
 
Polysomnography is the gold standard for sleep staging, but its high cost, laboratory equipment, 
and lengthy manual scoring limit patient access. DistillSleep replaces the typical 12-20-sensor 
setup with a single-channel EEG and performs inference in <10 ms per epoch on a Raspberry Pi, 
Jetson orin nano, or Coral dev board. Trained and tested on >10,000 overnight recordings from 
six independent cohorts, it matches expert accuracy (Macro-F1 up to 80%) and supplies clinicians 
with frequency-band saliency, inter-epoch context, and well-calibrated confidence scores. By 
combining interpretability, millisecond-level latency, and an open-source code release, 
DistillSleep supports point-of-care diagnostics, same-night CPAP titration, and large-scale home 
monitoring, substantially broadening the reach of sleep medicine. 
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1. Introduction 
 
Sleep disorders are common, costly, and dangerous. An 
estimated 936 million adults worldwide suffer from 
clinically significant sleep disorders [1], most of which 
remain undiagnosed or undertreated [2], costing five 
major OECD economies (US, UK, JPN, GER, CAN) 
approximately $680 billion annually [3]. 
Accurate sleep staging - classifying sleep into Wake, N1, 
N2, N3, and REM in 30-second epochs - is therefore 
critical for diagnosis and therapy titration [4,5].  
However, the current gold standard, polysomnography 
(PSG), is expensive, intrusive, and capacity-limited. 
Patients must endure attachment to 12--20 sensors, 
while clinicians require 90--120 minutes per patient for 
manual scoring, achieving only approximately 82% inter-
scorer agreement [6-8]. This explains why most of sleep 
disorder cases do not receive definitive diagnosis and 
timely treatment [peppard2013increased], exacerbating 
risks such as cardiovascular disease, daytime 
impairment, and increased accidents [9,10]. 
Real-time, portable, and interpretable sleep-staging 
systems can close this gap by enabling point-of-care 
decisions and reducing clinical workload. Continuous 
staging supports same-night continuous positive airway 
pressure (CPAP) titration and closed-loop ventilator 
control [11,12]. Automated home reports streamline 
patient follow-up, reducing manual scoring burden [13]. 
Our focus is to realize these benefits with a compact, 
interpretable single-channel electroencephalogram 
(EEG) model that performs inference in <10 ms and runs 
on bedside monitors or wearable headbands. 
Longer-term opportunities, such as adaptive bedroom 
thermoregulation [14,15], adjustable beds [16], and 
memory-consolidation stimulation [17], become feasible 
once trustworthy real-time staging is widely available. 
Rapid advances in deep learning have produced sleep 
staging models that approach expert accuracy on single-
channel EEG [18-24]. 
However, most published models remain computationally 
heavy black boxes [18-22,24], requiring server-class 
GPUs, long inference times, and unclear decision logic, 
which are incompatible with bedside monitors, wearables, 
and clinicians' need for transparent evidence. 
Balancing strong performance and interpretability within 
streamlined, on-device models thus remains under-
explored [23] 
In this study, we propose DistillSleep, a deep learning 
framework for on-device, real-time, and interpretable 
automatic sleep staging based on single-channel EEG. 
DistillSleep consists of a large, high-performing teacher 
model and an exceptionally lightweight student model. 
The teacher model (DistillSleep-T) achieves state-of-the-
art performance robustly in four large datasets, with 
Macro-F1 scores of 81.1% on SHHS1 [25,26], 78.9% on 
Physionet 2018 [27,28], 81.2% on DCSM, and 80.0% on 
KISS [29]. To address “black-box” skepticism, it provides 
comprehensive interpretability, including frequency-level 
importance, inter-epoch relationships, and well-
calibrated confidence scores, ensuring both robust 
performance and clinical trustworthiness. 

More importantly, the student model (DistillSleep-S) is 
designed for on-device real-time applications, featuring 
only 109k parameters (59.4 times smaller than the 
teacher model) and completing single-epoch inference 
within 10 ms on three resource-constrained platforms. 
Compared to SleePyCo [24], the best-performing 
conventional method, DistillSleep-S reduces model size 
by 20.8 times and computation overhead by 114.9 times. 
To achieve this efficiency without sacrificing performance, 
we design a knowledge distillation process [30-32] that 
enables DistillSleep-S to learn not only from the training 
data labels but also from the high-performing teacher 
model. 
DistillSleep-S is validated on the four large public cohorts, 
and two additional independent datasets (SleepEDF-78 
dataset (78 subjects) [27,33] and ISRUC dataset (118 
subjects) [34]), >10,000 overnight studies. Despite its 
compact size, DistillSleep-S achieves competitive Macro-
F1 scores up to 79.7% while maintaining comprehensive 
interpretability and improving confidence calibration. 
Its real-time capability, reliability, and transparency have 
the potential to broaden access to sleep diagnostics and 
underpin emerging applications that depend on 
immediate sleep-stage feedback. 
Our code and trained weights are open-sourced at: 
https://github.com/KeondoPark/sleep.git  
 
 

2. Methods 
 
DistillSleep comprises a high-performing, large-scale 
teacher model and an exceptionally compact student 
model. 
Both models adopt a hybrid two-stage architecture that 
combines convolutional neural network (CNN) and 
Transformer. The CNN-based stage 1 model effectively 
captures intra-epoch features and predicts the sleep 
stage for each epoch (one-to-one). Subsequently, the 
Transformer-based stage 2 model incorporates inter-
epoch features by taking a sequence of feature vectors 
from stage 1 model as input, to produce the refined 
sequence of sleep staging results (many-to-many). 
Moreover, our tailored architecture in both stages offers 
comprehensive interpretability. 
While the teacher and student models share architectural 
similarities, they are designed for different purposes. The 
teacher model (DistillSleep-T) is designed to deliver 
precise and robust sleep stage classification results. In 
contrast, the student model (DistillSleep-S) focuses on 
reducing model size and computational requirements 
while maintaining effective performance. To achieve this 
significant size reduction without compromising 
performance and comprehensive interpretability, we 
employed knowledge distillation, a technique that 
transfers knowledge from the high-performing teacher 
model to the lightweight student model. 
 
2.1 Model Architecture 
2.1.1 Teacher Model 
The overall architecture of teacher model is presented in 
Figure 1a. In the first stage, the model learns intra-epoch 
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patterns using a combination of convolutional blocks, a 
newly proposed Multi-Wavelength Pyramid (MWP) 
module, and inverted residual blocks [35]. The MWP 
module is particularly crucial in this stage, allowing the 
model to capture multi-scale patterns that correspond to 
the diverse frequency characteristics of each sleep stage. 
Specifically, each sleep stage is characterized by a 
predominant EEG frequency or wave types (Wake: 
above 7Hz (Alpha-Gamma), N1: 4-7Hz (Theta), N2: 4-
7Hz (Theta), N3: 0.5-4Hz (Delta), REM: 2-6Hz (Theta-
Delta)) [36-38]. To achieve accurate sleep staging, it is 
essential to extract features from these distinct EEG 
wavelength ranges. 
To this end, as depicted in Figure 1c, the MWP module 
defines four fields of views (FoVs): (1) Supra-Alpha 
(Alpha, Beta, Gamma and shorter wavelengths), (2) 
Theta, (3) Delta, and (4) Infra-Delta (longer wavelengths 
beyond Delta). This is achieved through parallel max-
pooling operations with varying pool sizes of 15, 25, 200, 
and 400, corresponding to different FoVs. 
Concretely, the MWP module applies the four separate 
max-pooling operations to features extracted by the third 
convolutional block, then concatenates these pooled 
features to create a multi-scale representation. This 
representation is processed through a series of inverted 
residual blocks [35], which not only preserves important 
information but also enhances computational efficiency. 
In addition, the MWP module offers intra-epoch 
interpretability by analyzing the contribution of each max-
pooled feature to the model's predictions. 
The stage 2 model focuses on learning temporal 
dependencies across consecutive sleep epochs. To 
achieve this, this model takes the sequence of feature 
vectors from the stage 1 model as input, incorporating 
position encoding [39] to provide the sequence order. The 
hierarchical transformer blocks, inspired by Swin-
transformer [40,41], constitute the core of the stage 2 
model. In this hierarchical setup, lower transformer 
blocks employ attention locally, while higher transformer 
blocks use attention on broader temporal spans, allowing 
the model to progressively capture higher-level 
dependencies across the sequence. As presented in 
Figure 1d, each hierarchical level consists of two 
transformer blocks with identical local window sizes. In 
the first transformer block, the sequence is divided by 
local windows and attention is applied within each local 
window. However, this block alone cannot capture 
relationships between patches spanning neighboring 
windows. To overcome this limitation, the second block 
uses shifted windowing approach: the sequence is 
shifted by half the window size to create a new set of local 
windows, thereby enhancing the model's ability to 
capture more diverse local dependencies. After each pair 
of transformer blocks, two adjacent patches are merged 
into a single patch, making each patch have a higher-
level feature representation. The model comprises four 
hierarchical levels, with the highest level ultimately 
applying attention across the entire sequence. Notably, 
the highest level omits the shifted transformer block and 
patch merging, because it has access to the complete 
sequence information. Consequently, the model includes 
seven transformer blocks in total. This hierarchical 

architecture facilitates the efficient integration of 
dependencies across sequential epochs, which is critical 
for accurate sleep staging. The output from the 
transformer blocks is then passed to a classifier, which 
generates the final probability distribution for each class. 
Additionally, we implement an ensemble technique, 
following previous works [22,23,42,43], to obtain the final 
prediction results based on multiple sequence 
predictions. Since the stage 2 model uses a sequence of 
epochs as input, each epoch appears at different 
positions within the sequence. For instance, if the 
sequence shifts by one epoch, the last epoch in the 
current sequence moves to the second-to-last position in 
the next sequence, and so forth. Consequently, each 
epoch is predicted multiple times, appearing in 
progressively earlier positions across different 
sequences. These overlapping predictions, which are 
probability vectors for each class, are then averaged to 
produce a final, more robust decision for each epoch, 
ultimately enhancing the model’s accuracy and stability. 
 
2.1.2 Student Model 
The overall architecture of student model is presented in 
Figure 1b. The student model is a lightweight version of 
the teacher model, maintaining the same two-stage 
architecture while being optimized for enhanced 
efficiency. Similar to the teacher model, the student 
model incorporates convolutional blocks, MWP layers, 
and inverted residual blocks in stage 1, and followed by 
a transformer-based structure in stage 2. In stage 1, the 
student model utilizes fewer inverted residual blocks with 
smaller number of filters compared to the teacher model, 
allowing for a more compact design. In stage 2, whereas 
the teacher model employs hierarchically stacked seven 
transformer blocks, the student model simplifies this by 
using only a single transformer block with reduced 
dimension. The single transformer block relies solely on 
global attention, allowing it to capture dependencies 
across the entire sequence efficiently. To further reduce 
the computational burden, layer normalization and GELU 
activation in the teacher model are replaced by batch 
normalization and ReLU6 activation. This reduction in 
complexity makes the student model more suitable for 
resource-constrained environments while retaining the 
essential structure of the teacher model. 
 
2.2 Loss 
2.2.1 Weighted Cross Entropy Loss 
In sleep datasets the class distribution is commonly 
imbalanced. In such cases, using the plain cross entropy 
loss for training commonly leads to the biased model 
towards majority classes. To tackle this, we used 
weighted cross entropy loss, similar to the ones used in 
previous studies [44,45]. More specifically, the weighted 
cross entropy (WCE) loss is defined as follows: 
 

𝐿𝑜𝑠𝑠ௐ஼ா = −
1

𝑁
෍ ෍ 𝑤௞𝑦(௜,௞)

ேೖ

௜ୀଵ

log 𝑦ො(௜,௞)

௄

௞ୀଵ

 

 
where k represents each sleep stage, N_k is the total 
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number of epochs labeled as the stage k from the training 
split, 𝑁(= ∑ 𝑁௞

௄
௞ୀଵ ) is the total number of epochs from 

the training split, 𝑦(௜,௞)  and 𝑦ො(௜,௞)  are the ground truth 
label and the predicted sleep stage by the model for 𝑖-th 
epoch in stage 𝑘 , respectively, and 𝑤௞ =

ma x ቀlog௄
ே

ேೖ
, 1ቁ  is the weight assigned to the loss 

corresponding to each sleep stage 𝑘. This loss was used 
solely to train DistillSleep-T and used in conjunction with 
knowledge distillation loss to train DistillSleep-S. 
 
2.2.2 Knowledge Distillation Loss 
The knowledge is transferred to DistillSleep-S by using 
knowledge distillation loss term along with weighted 
cross entropy loss. When the student model is trained to 
mimic the teacher model's intermediate representations, 
it is referred to as feature-based knowledge distillation. 
Conversely, when the student model is trained to 
replicate the teacher model's predictions, this process is 
referred to as logit-based knowledge distillation. For 
feature distillation in stage 1, we used OFD (A 
comprehensive Overhaul of Feature Distillation [31]). The 
features before MWP and the output features of 
penultimate layer were used for feature distillation in 
stage 1 model. The feature distillation (FD) loss is 
calculated as following: 
 

𝐿𝑜𝑠𝑠ி஽,௦ଵ = ෍ 𝑤௟𝑑௣ ቀ𝑀𝑅𝑒𝐿𝑈(𝐹௟
்), 𝑟(𝐹௟

ௌ)ቁ

௟∈௅

 

 
where 𝐿 represents the set of layers to be distilled, 𝑙 is 
each layer in 𝐿  and 𝑤௟  is the weight given to each 
layer's distillation loss. MReLU is the marginal ReLU 
which is the modified ReLU having lower bound less than 
zero, 𝑭௟

்,ௌ are the features of the teacher network and 
the student network, and 𝑟  is the regressor which 
projects the student's features to teacher's features for 
dimension matching. The partial distance function 𝑑௣ is 
defined as following: 
 

𝑑௣(𝑻, 𝑺) = 𝛴௜ ∈ ௗ௜௠(𝑻) ൜
0         𝑖𝑓  𝑆௜ ≤ 𝑇௜ ≤ 0,

𝑆஼(𝑇௜ , 𝑆௜) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
where 𝑆஼ is cosine similarity. 
For feature distillation in stage 2, we used CCKD 
(Correlation congruence for knowledge distillation [46]) 
and attention similarity loss [47]. Specifically, the FD loss 
is calculated as following: 
 

𝐿𝑜𝑠𝑠ி஽,௦ଶ = 𝛴௟ ∈ ௅[𝑤௟𝑀𝑆𝐸(𝑭௟
்(𝑭௟

்)ୃ, 𝑟(𝑭௟
ௌ)𝑟(𝑭௟

ௌ)ୃ)]

+ 𝑤஺𝑆஼(𝑨் , 𝑨ௌ) 
 
where 𝐿 represents the set of layers to be distilled, 𝑙 is 
each layer in 𝐿  and 𝑤௟  is the weight given to each 
layer's distillation loss. 𝑭௟

்,ௌ are the output features of the 
teacher and the student network from distilling layer, r is 
the regressor for dimension matching and MSE is mean 
squared error. 𝑨்,ௌ  are the vectorized global attention, 
𝑆஼  is cosine similarity and 𝑤஺  is the weight given to 
attention similarity loss. 
We employed improved variant of DIST (Knowledge 

distillation from a stronger teacher [32]) for logit-based 
knowledge distillation. Our logit-distillation (LD) loss is 
decomposed into two terms: intra-class loss and inter-
class loss. Intra-class loss aligns class-wise probabilities 
of the student across all data points in the batch with 
those of the teacher, ensuring consistency within each 
class. In contrast, inter-class loss encourages the 
student's output probability vector for each data point to 
closely match that of the teacher. Unlike the original DIST, 
we integrate the class-wise weights in both intra- and 
inter-class loss to account for class imbalance. Formally, 
the LD loss is defined as following: 

𝐿𝑜𝑠𝑠௅஽ = 𝐿𝑜𝑠𝑠ூ௡௧௘௥ + 𝐿𝑜𝑠𝑠ூ௡௧௥௔ 

𝐿𝑜𝑠𝑠ூ௡௧௥௔ =
1

𝐾
෍ 𝑤௞𝑑൫ŷ(:,௞)

் , ŷ(:,௞)
ௌ ൯

௄

௞ୀଵ

 

𝐿𝑜𝑠𝑠ூ௡௧௘௥ =
1

𝑁
෍ 𝑤௜𝑑൫ŷ(௜,:)

் , ŷ(௜,:)
ௌ ൯

௄

௞ୀଵ

 

where ŷ(௜,௞)
்,ௌ   are the predicted probability for 𝑖 -th data 

and 𝑘-th class, of the teacher/student models. The same 
class-wise weight in weighted cross entropy loss is 
applied as the weight for the intra-class loss, 𝑤௞ . The 
weight for the inter-class loss, 𝑤௜ follows 𝑤௞, based on 
each data point i's ground truth sleep stage 𝑘. 
d is the distance function between two probability vectors 
from teacher and student, which is defined as following: 
 

𝑑(𝒖, 𝒗) = 1 − 𝜌(𝒖, 𝒗) 
 
where 𝜌(𝒖, 𝒗)  is Pearson correlation coefficient 
between two vectors 𝒖 and 𝒗. We used the same LD 
loss to train both stage 1 and stage 2 model. 
In this study, two different types of teacher were utilized 
depending on the dataset sizes. When the dataset size is 
sufficiently large, the teacher can be trained sufficiently 
strong and robust using solely the dataset itself. In this 
case, the teacher is referred to as the internal teacher. 
Both logit-based and feature-based knowledge 
distillation methods were used. On the other hand, when 
the dataset size is limited, training a large-scale, robust 
teacher model becomes challenging. In such cases, we 
employed a teacher model trained on large-scale 
external datasets, referred to as the external teacher. 
While the external teacher provides robust feature 
representations, its predicted logits may not perfectly 
align with the target dataset's labels due to label 
variability[6-8,48]. To address this issue, only the feature-
based distillation was employed for this case. 
The final loss term is calculated as follows: 
 

𝐿𝑜𝑠𝑠஽௜௦௧௜௟௟ = 𝐿𝑜𝑠𝑠ௐ஼ா + 𝑤௅஽𝐿𝑜𝑠𝑠௅஽ + 𝑤ி஽𝐿𝑜𝑠𝑠ி஽ 
 
where 𝑤௅஽ = 2  and 𝑤ி஽ = 1  are used for internal 
teacher and 𝑤௅஽ = 0 and 𝑤ி஽ = 1 are used for external 
teacher. 
 
2.3 Model Training Details 
DistillSleep was implemented using Tensorflow [49] 
framework. We trained both stage 1 and 2 models of 
DistillSleep-T/S over 30 epochs, respectively. AdamW 
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optimizer was used for training with the learning rate 
decreasing from 1e-3 to 1e-6 following a cosine 
annealing schedule. To better account for the inherent 
uncertainty of the ground truth labels, we used label 
smoothing [50] during standalone training. Specifically, 
instead of one-hot encoding, the ground truth probability 
of class 𝑘 was defined as following: 

𝑦௞
௅ௌ = 𝑦௞(1 − 𝛼) + 𝛼/𝐾 

 
where 𝑦௞  is the one-hot encoded value for class 𝑘, 𝛼 is 
the smoothing parameter and 𝐾  is total number of 
classes. We did not use label smoothing during 
knowledge distillation, since probability vectors from 
teacher model provide soft target and the effect of label 
smoothing is limited, as presented in the previous 
research [51]. To increase data diversity, we used 
random shifting as data augmentation technique. 
 
2.4 Visualizations of Interpretability 
For intra-epoch interpretability, we employed Grad-CAM 
[52] to analyze the contributions of each EEG wavelength 
range. Grad-CAM calculate the importance of each 
feature value using gradient information. Specifically, the 
weight(𝛼௖) for the feature vector of channel c is computed 
as: 
 

𝛼௖ =
1

𝐿
෍

𝜕ŷ௞

𝜕𝐹௜
௖

௅

௜ୀଵ

 

 
where 𝑦௞   is the predicted score for the ground-truth 
class 𝑘 , 𝐹௜

௖  is the activation of 𝑖 -th element in the 
feature vector of channel 𝑐  and 𝐿  is the length of the 
feature vector 𝐹௖. The importance of each element I୧ is 
then calculated as: 
 

𝐼௜ = 𝑀𝑎𝑥(0,  𝛴௖𝛼௖𝐹௜
௖) 

 
We applied Grad-CAM to the feature vectors generated 
by the MWP module. 
For inter-epoch interpretability, we leveraged the 
attention scores from the transformer blocks. We 
examined the global attention scores in the last 
transformer block of the teacher model, and the attention 
scores in the single transformer block of the student 
model. Furthermore, we aggregated attention scores 
across sliding sequences to investigate broader inter-
epoch influences and obtain more robust attention scores. 
 
2.5 Quantization 
DistillSleep-S is targeted to be deployed at resource-
constrained devices. To further reduce the model size 
before deployment, DistillSleep-S was quantized from 
real numbers to integer values. Specifically, following 
Jacob et al. [53], we convert all parameters from 32-bit 
floating point (FLOAT32) to 8-bit integer precision (INT8) 
using the TensorFlow Lite Converter together with 
TensorFlow model optimization toolkit [49]. This 
quantization not only reduces the model's memory 
requirements but also enables efficient execution on 
integer-only accelerators, such as mobile NPUs (e.g. 

Google EdgeTPU). When quantizing the model's weights 
and activations, two different quantization strategies 
were considered: Post-Training-Quantization (PTQ) and 
Quantization-Aware-Training (QAT). PTQ quantizes the 
weights and activations of the model after the training is 
completed, based on their distribution. On the other hand, 
Quantization-Aware-Training (QAT) fine-tunes the model 
while simulating quantization, adapting the weights for 
better compatibility with the quantized format. QAT 
commonly results in lower quantization error and better 
accuracy, but requires additional effort, as the model 
must be fine-tuned with quantized parameters. 
 
2.6 Model Calibration 
Although deep learning-based models provide fairly high 
accuracy, they still cannot provide the perfectly precise 
outcomes. Therefore, it is important to provide the 
information on how much the model's classification can 
be trusted so that the clinicians can assess to what extent 
they can rely on the model's results in clinical practice. 
The confidence score, defined as the largest value from 
the model's probability distribution output, can serve as a 
measure of output reliability. To this end, it must be 
calibrated to closely reflect the model's true accuracy. 
Model calibration [54,55] can be used to evaluate the 
proximity between the confidence score and model's true 
accuracy. We assessed the calibration using reliability 
diagram and expected calibration error (ECE), two of the 
most commonly used tools for this purpose. In reliability 
diagram, the expected sample accuracy is plotted as a 
function of confidence. If the model is perfectly calibrated, 
which means the confidence perfectly represents the 
accuracy, the plot exactly follows 𝑦 = 𝑥 line. When the 
model is overconfident, the actual confidence is lower 
than the accuracy, resulting in the plot positioned below 
𝑦 = 𝑥  line. Conversely, underconfident models show 
plots positioned above 𝑦 = 𝑥 line. Gap is calculated as 
the average accuracy of each confidence bin minus 𝑦 =
𝑥  line. Thus, positive gap is understood as 
underconfidence, whereas negative gap is interpreted as 
overconfidence. ECE represents how much the 
confidence deviates from accuracy, calculated by the 
following formula: 
 

𝐸𝐶𝐸 = ෍
|𝐵௠|

𝑛

ெ

௠ୀଵ

|𝑎𝑐𝑐(𝐵௠) − 𝑐𝑜𝑛𝑓(𝐵௠)| 

 
where 𝑛 is the number of samples, 𝐵௠ is a confidence 
bin and 𝑚 is the number of confidence bin. 
 
 
3. Results 
 
3.1 Datasets, Preprocessing and Metrics 
To train and evaluate DistillSleep, we utilized four large-
scale datasets that are widely used in sleep research: 
Sleep Heart Health Study 1 (SHHS1) [25,26], Physionet 
2018 (PHY) [27,28], Danish Center for Sleep Medicine 
(DCSM) and Korea Image Sleep Study (KISS) [29]. 
In addition, we utilized two small datasets to evaluate the 
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effectiveness of external teacher-based knowledge 
distillation: SleepEDF-78 [27,33] and Institute of 
Systems and Robotics, University of Coimbra (ISRUC) 
[34]. 
We followed the same train/val/test split used in 
XSleepNet [22] for SHHS1, SleepEDF-78 and PHY. For 
DCSM, we followed the train/val/test split used in U-
Sleep [20] and for KISS, we followed the train/val/test 
split used in Jeong et al. [29]. For ISRUC, we adhered to 
the subject group (SG) division specified in the dataset: 
SG1 (100 subjects, 1 record per subject), SG2 (8 
subjects, 2 records per subject), and SG3 (10 subjects, 1 
record per subject). For SG1, 50 records were used for 
knowledge distillation training, 10 records for validation, 
and the remaining records for testing. SG2 and SG3 were 
used only for evaluation. The details of each dataset are 
described in Supplementary Materials. 
Following AASM (American Academy of Sleep Medicine) 
guidelines [56], we used five sleep stages: Wake, N1, N2, 
N3, and REM. For any datasets scored according to the 
Rechtschaffen and Kales criteria [57], we rescored the 
stages by merging N3 and N4 stages into N3 stage. Any 
epochs scored other than the five sleep stages (e.g. 
'MOVEMENT' or 'UNKNOWN') were excluded during 
preprocessing. Unlike previous studies [22,23,42,45,58] 
that utilized signal filtering or frequency domain 
transformation techniques, such as notch filtering, 
Butterworth filtering, Short-time Fourier Transform, or 
Fast Fourier Transform, we did not apply these non-trivial 
methods. Instead, we only standardized the signals and 
resample them to 200 Hz if the original sampling 
frequency differs. This not only simplifies the training 
pipeline but also reduces inference latency by removing 
the need for complex transformations. For evaluation and 
comparison to other methods, we used unweighted 
Macro-F1 score on test split as the major metric. 
Evaluation results on other metrics (Accuracy, Cohen's 
kappa, Average sensitivity, Average specificity) are also 
provided for complementary purposes. 
 
3.2 Teacher Model 
3.2.1 Classification Performance 
Table 1 compares the performance of DistillSleep-T on 
the four large datasets - PHY, SHHS1, DCSM and KISS - 
against state-of-the-art methods reported in prior studies 
[19-24]. DistillSleep-T achieved the highest Macro-F1 
score across all the datasets, highlighting its 
effectiveness. While stage 1 model alone delivers 
competitive predictive performance, the stage 2 model 
further improves the Macro-F1 score by 3.3-7.1%p. 
These results demonstrate the ability of the MWP module 
to capture the characteristics of different wavelengths 
from the input signal at intra-epoch level and that of the 
hierarchical transformer to aggregate inter-epoch level 
information. 
 
3.2.2 Intra-epoch Interpretability 
Figure 2a visualizes the relative importance of different 
EEG components using Grad-CAM [52] on features after 

MWP module, based on one-epoch samples for each 
sleep stage. For Wake and N1 stages, features from 
smaller pools (Supra-Alpha or Theta) are treated as more 
significant. In contrast, deeper sleep stages, such as N2 
and N3, rely more on features from larger pools (Theta or 
Delta). This visualization provides clinicians with valuable 
insights into the mechanisms driving the model's 
predictions. 
To evaluate the consistency of the model's interpretability, 
we averaged Grad-CAM results from the MWP module 
across epochs within the same sleep stage (Figure 2b). 
As sleep deepens from Wake to N1, N2, and N3, the 
significance of features from larger pools increases. 
Interestingly, however, in the Wake stage, not only are 
Supra-Alpha features significant but Infra-Delta features 
are also highly significant. This finding does not align with 
the conventional understanding that the Wake stage is 
dominated by short wavelengths [36-38]. This 
discrepancy suggests two possibilities: either the Wake-
stage data contains meaningful long-wavelength 
components, or the Infra-Delta max-pooling layer is 
inadvertently capturing short-wavelength features. To 
investigate further, we applied a high-pass filter at 0.5 Hz 
to remove long-wavelength components and re-
visualized the Grad-CAM results (Figure 3a). The 
visualization shows that the significance of Infra-Delta 
features substantially decreased. Conversely, when the 
input was low-pass filtered to maintain only long-
wavelength components, Infra-Delta features remained 
strongly activated (Figure 3b). These findings confirm 
that the MWP module functions as intended, effectively 
capturing short-wavelength components through small 
pools and long-wavelength components through large 
pools. In addition, the observed importance of Infra-Delta 
features in the Wake stage (Figure 2b) is due to the actual 
presence of meaningful information in the long-
wavelength signals. 
To further confirm this observation, we present cases 
where the model correctly classifies the Wake stage even 
after applying a low-pass filter (Figure 3c and Figure 3d). 
Contrary to common assumptions, these cases - 
supported by both human perception of the raw signals 
and Grad-CAM results for the MWP module - 
demonstrate that some Wake-stage epochs are 
dominated by long wavelengths. This frequency range 
(0-0.5Hz) has traditionally been filtered out in sleep 
staging research [18,22,23,42], as it was assumed to 
contain only noise. However, our analysis reveals the 
deep learning model's ability to extract informative 
features from this band. This finding highlights how 
interpretable models can reveal previously unexplored 
characteristics inherent in the data, offering new insights 
into the underlying signals. We will delve deeper into this 
point in Section 4. 
 
3.2.3 Inter-epoch Interpretability 
We used global attention scores from the last transformer 
block of DistillSleep-T to visualize the inter-epoch 
relationships leveraged by the model. Figure 4 provides 
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attention score visualizations for sequences centered 
around a sample target epoch. In Figure 4a, the target 
epoch was initially classified as N1 by the stage 1 model 
but adjusted to REM by the stage 2 model after 
accounting for relationships with adjacent epochs. The 
aggregated attention scores show which neighboring 
epochs mainly influenced the decision for the target 
epoch: the 825th and 836th epochs, both classified as 
REM, consistently exhibit high attention scores, both 
within individual sliding sequences and in the aggregated 
attention results. This indicates that these REM epochs 
contained critical features relevant to REM, providing 
essential contextual information at the inter-epoch level. 
On the other hand, when the target epoch was scored as 
N3 in Figure 4b, no specific neighboring epochs showed 
strong attention. Instead, the model displays prominent 
self-attention, implying that the target epoch itself 
contained distinctive features of N3. 
 
3.3 Student Model 
Since the model's representation power typically 
decreases with smaller size or reduced computational 
burden as shown by the trendlines in Figure 5b and 
Figure 5c, it poses a significant challenge to obtain a 
lightweight model with good predictive performance. As a 
practical solution for this dilemma, we trained 
DistillSleep-S via knowledge distillation from DistillSleep-
T. The following subsections present our experimental 
results; DistillSleep-S's feasibility on resource-
constrained devices, its predictive performance 
improvements, and its alignment of internal decision-
making process with DistillSleep-T through knowledge 
distillation. 
 
3.3.1 On-device Feasibility 
The student model, DistillSleep-S, is extremely 
lightweight having 59.2 times fewer parameters and 
requiring 19.6 times less computaiton burden compared 
to DistillSleep-T. To validate the practicality of its on-
device deployment, we tested DistillSleep-S's end-to-end 
(e2e) latency and memory footprint on resource-
constrained devices. 
Table 2 presents the e2e latency and peak memory of the 
INT8-quantized DistillSleep-S model for single-epoch 
classification on various resource-constrained devices 
(Raspberry Pi 4B, NVIDIA Jetson Orin Nano and Google 
Coral dev board) as well as a high-performance 
workstation. Detailed device specifications and 
measurement process are provided in the 
Supplementary Materials. For comparison, we also 
evaluated DistillSleep-T. The e2e latency of DistillSleep-
T was 1473.9 ms on a Raspberry Pi 4B, 569.8 ms on a 
Jetson Orin Nano, and 210.5 ms even on a high-
performance workstation. Additionally, the peak memory 
consumption reached up to 1191 MB across the tested 
devices. This makes DistillSleep-T, like conventional 
methods, unsuitable for real-time applications. In contrast, 
DistillSleep-S demonstrated remarkable efficiency with 
an e2e latency of 9.1 ms on Raspberry Pi 4B, making it 

162 times faster than DistillSleep-T. The e2e latency was 
further reduced when mobile accelerators were used: 5.5 
ms on Jetson Orin Nano (mobile GPU) and 8.6 ms on 
Coral dev board (mobile NPU). In addition, the peak 
memory remained below 59 MB on tested devices, 20 
times lower than DistillSleep-T, making DistillSleep-S 
well-suited for edge-devices with limited memory 
capacity. 
 
3.3.2 Classification Performance 
While the student model significantly reduces the model 
size and computational requirements, this lightweight 
architecture can lead to losing representational power 
without a tailored training mechanism. When trained 
independently, referred to as Baseline-S, the student 
model exhibited 3.1-5.9%p lower Macro-F1 scores on 
PHY, SHHS1, DCSM, and KISS compared to 
DistillSleep-T, as shown in Table 3 and Figure 5a. On the 
other hand, when knowledge distillation was employed, 
DistillSleep-S showed improved classification 
performance as shown in Table 3. The performance 
improvement across the four evaluation datasets was 
3.4%p on DCSM, 2.3%p on SHHS1, 2.1%p on PHY and 
1.9%p on KISS. 
On smaller datasets SleepEDF-78 [33] and ISRUC [34] 
we used external teacher for knowledge distillation. This 
teacher model was trained using 10,723 PSG records 
sourced from the four large datasets (PHY, SHHS1, DCSM, 
and KISS). For ISRUC, ISRUC-SG1 was used for 
knowledge distillation training and evaluation, but 
ISRUC-SG2 and ISRUC-SG3 were entirely used for 
evaluation. Table 3 and Figure 5a demonstrate that 
DistillSleep-S improved the Macro-F1 scores by 5.0%p 
(SleepEDF-78), 4.6%p (ISRUC-SG1), 6.8%p (ISRUC-
SG2), and 2.1%p (ISRUC-SG3), thanks to external 
teacher. The greater performance improvement on 
smaller datasets confirm that knowledge distillation using 
an external teacher effectively overcomes data 
limitations to train a robust model. 
A class-wise analysis in Table 3 reveals that N1 and REM 
stages benefit the most from knowledge distillation under 
both internal and external teachers. This is because, 
compared to other sleep stages, N1 and REM stages 
require more comprehensive understanding of both intra-
epoch and inter-epoch information for accurate 
classification, making them inherently more difficult to 
classify. The results verify that complex knowledge was 
successfully transferred from the teacher to the student. 
Figure 5b and Figure 5c illustrate the Macro-F1 scores of 
DistillSleep-T and S compared to those of previous 
methods, plotted against the number of parameters and 
FLOPs (FLoating point OPerations), respectively. While 
Baseline-S and the state-of-the art models generally 
align with the regressed line (dotted line) that is fitted to 
the number of parameters (or FLOPs) and Macro-F1 
scores, DistillSleep-S stands significantly above this line, 
exhibiting superior computational efficiency and tackling 
the well-known trade-off between model size and 
accuracy. 
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Table 4 summarizes DistillSleep-S's Macro-F1 scores 
under different INT8 quantization strategies, on the PHY 
dataset. Relatively simple Post-Training-Quantization 
(PTQ) approach resulted in a drastic drop in the Macro-
F1 score. While QAT alone improved the Macro-F1 score 
to 76.6%, combining knowledge distillation during the 
QAT procedure further boosted the performance to 
77.7%, which is only 0.2%p lower than the full-precision 
(FLOAT32) model. 
 
3.3.3 Interpretability 
Since DistillSleep-T and DistillSleep-S share similar 
architecture that offers interpretability, we investigated 
whether the student model inherits internal decision 
processes of the teacher model through knowledge 
distillation. To explore this, we compared the 
interpretability of DistillSleep-S and Baseline-S in both 
the stage 1 and 2 models, using Grad-CAM and attention 
mechanisms, respectively. Figure 6 shows the averaged 
Grad-CAM results for DistillSleep-S and Baseline-S, 
providing visualizations analogous to the DistillSleep-T 
results shown in Figure 2b. When comparing the two 
models, we observed that DistillSleep-S exhibits patterns 
more closely aligned with those of DistillSleep-T: for 
example, DistillSleep-S' Theta max-pooled features are 
more prominent in the N2 stage, and Delta max-pooled 
features are more highlighted in the N3 stage, compared 
to Baseline-S. This suggests that knowledge distillation 
helps align the internal decision processes of 
DistillSleep-S's stage 1 model more closely with those of 
DistillSleep-T. 
For stage 2, we examined the attention scores of 
DistillSleep-S and Baseline-S, for the same cases 
presented in Figure 4. Notably, for the target epoch 
scored as REM in Figure 7b, Baseline-S shows an 
attention pattern different from DistillSleep-T, requiring 
greater attention to adjacent epochs. In contrast, in 
Figure 7a, DistillSleep-S shows stronger attention to the 
same epochs that DistillSleep-T focuses on (825th and 
836th epochs). For the target epoch scored as N3, the 
attention patterns in DistillSleep-T/S and Baseline-S 
attention are similar, with relatively weak attention on 
adjacent epochs. This observation helps explain why N3 
benefits relatively less from knowledge distillation, as 
shown in Table 3. 
 
3.4 Model Robustness and Reliability 
3.4.1 Model Generalizability 
To assess the model's generalizability to external 
datasets, we evaluated the external teacher on the 
SleepEDF-78 and ISRUC datasets, without retraining, 
as presented in Table 5. In this zero-shot setting, the 
Macro-F1 score ranged from 55.9 to 67.8%. This 
performance drop was then mitigated by test-time 
adaptation, which adjusts the pretrained model using 
unlabeled test-time data. We adopted two popular 
methods: Test-time batch normalization (BN) adaptation 
[59] and Test time ENTropy minimization (TENT) [60]. As 
shown in Table 5, these methods improved the 

performance to 66.2-75.8% after test-time BN adaptation 
and 66.9-76.3% after TENT, in Macro-F1 score. For 
comparison, a fully finetuned model achieved Macro-F1 
of 73.0-81.1%, leaving a final performance gap of 1.7-
9.0%p between the adapted model and this upper-bound 
benchmark. 
 
3.4.2 Robustness to EEG-lead choice 
To investigate the robustness of DistillSleep to the choice 
of EEG lead, we evaluated its performance on the PHY 
dataset using two additional EEG leads (F3-M2 and O1-
M2) and compared the results to the C4-M1 lead used in 
our main study. The experimental results are summarized 
in Table 6. Consistent with previous studies [18,20], the 
choice of EEG lead did not result in significant variations 
in predictive performance. For DistillSleep-T, compared 
to the C4-M1 lead, the F3-M2 lead resulted in 0.6%p 
increase in Macro-F1 score, while O1-M2 lead resulted 
in 1.9%p drop. The suboptimal performance from an 
occipital lead is also consistent with prior research. A 
similar tendency was observed for DistillSleep-S and 
Baseline-S, where the F3-M2 lead exhibited slightly 
improved predictive performance and the O1-M2 lead 
showed lower predictive performance. 
 
3.4.3 Model Reliability 
Figure 8 exhibits the reliability diagrams of DistillSleep-T, 
DistillSleep-S, and Baseline-S, along with the 
corresponding ECE, measured on PHY. In these 
diagrams, DistillSleep-T shows a strong alignment 
between confidence scores and accuracy, although its 
confidence levels are slightly lower than the actual 
accuracy. Baseline-S exhibits a calibration gap of a 
similar magnitude to DistillSleep-T. In contrast, 
DistillSleep-S achieves near-perfect calibration: the gap 
in the reliability diagram is significantly reduced, and its 
ECE is 2.7Ｘ smaller than that of both DistillSleep-T and 
Baseline-S. These findings suggest that knowledge 
distillation improves the calibration of the student model 
by combining the richer information from both training 
data and the teacher model. 
 
 
4. Discussion 
 
Over the past decade, deep-learning systems such as 
DeepSleepNet [18], IITNet [19], U-Time [21]/U-Sleep [20], 
XSleepNet [22], SleepTransformer [23] and, most 
recently, SleePyCo [24] have steadily raised the ceiling 
on single-channel sleep-staging accuracy. However, 
these models remain computationally heavy. For 
example, SleePyCo requires 2.3 million parameters and 
11.2 GFLOPs for inference. Such footprints preclude 
real-time inference on bedside monitors and wearable. 
Since the model's representation power typically 
increases with greater size or heavier computational 
burden as shown in Figure 5b and Figure 5c, it poses a 
significant challenge to obtain the lightweight model with 
good predictive performance. As a practical solution for 
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this dilemma, DistillSleep introduces a dual-model 
framework consisting of performance-oriented teacher 
and lightweight student. The teacher model outperforms 
other existing models in terms of predictive performance. 
This model can be used where the accurate prediction is 
important, such as automatic PSG scoring. The student 
model, on the other hand, is very lightweight to complete 
the single epoch inference in 9.1ms on Raspberry Pi 4B. 
Despite its small size, the predictive performance of 
DistillSleep-S remains competitive thanks to knowledge 
distillation from the strong teacher model. Moreover, the 
external teacher, trained on 10,723 PSG records, is 
readily employed to train a robust student model even 
with as few as 50 training samples. This approach 
eliminates the challenges of training a strong teacher 
model with limited data, enhancing the practicality. The 
student model can be readily used for broader 
applications where computation resources are limited or 
having timely results is important. Such cases include 
breathing control for patients with obstructive sleep 
apnea (OSA) or patients on mechanical ventilators [11] 
[12], remote sleep monitoring for optimized care delivery 
[13], temperature control during sleep [14,15], 
automatically adjustable bed [16], and memory 
consolidation [17]. 
Moreover, DistillSleep provides interpretability at both 
intra- and inter-epoch levels through the MWP module 
and attention mechanisms. These features allow human 
users to trace the model's internal decision making 
processes, making DistillSleep more reliable and 
transparent. For example, according to AASM rules, 
Delta waves should constitute at least 20% of an epoch 
to be scored as N3 stage. By observing MWP's Delta 
activation in N3-scored epochs, clinicians can verify if the 
model is focusing on Delta waves as expected. Another 
example includes verifying REM stages using attention 
scores. AASM rules state that if any prior epoch is scored 
as REM and no stopping criteria exist in the following 
epochs, the target epoch should be scored as REM even 
in the absence of clear REM indicators in it. By examining 
attention scores as in Figure 4a, clinicians can confirm 
whether these rules are consistently applied. 
Additionally, interpretability analysis offers deeper insight 
into the unexplored potential of deep learning models. As 
demonstrated in Section 3.2.2, the MWP module 
provides an understanding of how the model utilizes slow 
waves in the 0-0.5 Hz band - previously dismissed as 
irrelevant to sleep staging - for classifying the Wake stage. 
This counterintuitive observation may stem from the 
model's reliance on single-channel EEG data, unlike the 
AASM guidelines, which utilize multimodal full PSG 
signals. Even in scenarios where other signals, such as 
EEG from different positions, EOG, EMG, or ECG play a 
more critical role than the target EEG channel in 
conventional sleep staging, single-channel models are 
forced to extract all relevant features solely from the 
target EEG channel. Consequently, transparent 
interpretation of these models can illuminate how 
information from other modalities is indirectly encoded 

within the target EEG signals and which EEG features 
are prioritized when other channels are eliminated, 
offering unique insights on the model's decision-making 
process. 
Previous research examined the EEG components in 
infra-Delta band, known as infra-slow oscillations (ISOs) 
[61] [aladjalova1957infra]. Studies have shown that these 
oscillations are related to autonomic control system [62] 
[63] and are sensitive to stress from cognitive tasks [64] 
[prokhorov2023changes]. Our results indicate that deep 
learning models may differentiate patterns of ISOs 
between waking and sleeping states. Another possible 
explanation is that this Wake-stage classification may 
come from combined eye movements or blinking, as 
stated in the AASM guidelines [56]. 
Although these are not explicit EEG scoring criteria, 
DistillSleep may effectively identify and utilize inherent 
EEG features related to these activities from the raw data 
for its Wake-stage classification. The above example 
demonstrates the value of an interpretable model. The 
‘black-box’ nature of deep learning models veils which 
data characteristics serve as meaningful predictive 
features, resulting in the exclusion of potentially 
important information from the raw data by following 
conventional preprocessing. For instance, filtering out 0-
0.5Hz frequency range from the raw signal, as done in 
prior studies [18,22,23,42], results in misclassification of 
certain samples as presented in Figure 3c and Figure 3d. 
In contrast, interpretable models enable users to not only 
gain insights into the underlying mechanisms of the 
model's predictions but also identify the important data 
characteristics, ultimately enabling more effective 
preprocessing strategies. 
Previous studies have proposed interpretable sleep 
staging models, employing techniques such as layerwise 
relevance propagation on time-frequency images [65], 
attention scores in transformer blocks [23] [66] or eigen-
CAM on screen-captured PSG images [29] [43]. However, 
these methods focused on large-scale models and did 
not explore whether the interpretability is maintained after 
model compression. Our interpretability analysis verifies 
that when trained independently, a small model focuses 
on different features compared to the large-scale teacher 
model. In contrast, DistillSleep-S addresses the limitation 
via knowledge distillation, effectively preserving the 
internal decision-making processes of the teacher model 
after model size reduction, as shown in Figure 6 and 
Figure 7. These findings indicate that knowledge 
distillation not only enhances DistillSleep-S's predictive 
performance but also ensures consistent interpretative 
patterns with DistillSleep-T for identical inputs. This 
synchronized behavior allows practitioners to confidently 
deploy either model interchangeably based on specific 
task requirements, knowing the underlying reasoning 
remains consistent. For example, DistillSleep-S can be 
utilized for latency-sensitive applications while 
DistillSleep-T can be employed for scenarios demanding 
higher accuracy. 
In addition, an improvement in model calibration was 
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observed in DistillSleep-S, addressing the 
underconfidence of its teacher. Sleep staging inherently 
involves a high degree of uncertainty, making it crucial to 
effectively capture this uncertainty for both better 
performance and calibration [67,68]. Knowledge 
distillation, with its use of soft labels, naturally embeds 
uncertainty, making it well-suited for this inherently 
uncertain task. Interestingly, while previous works have 
noted that knowledge distillation mitigates 
overconfidence in student models [51], our results show 
that it can also improve underconfidence. To our 
knowledge, this is the first study to apply knowledge 
distillation for sleep staging, while demonstrating that 
interpretability is effectively transferred and model 
calibration is improved. Even when stronger models can 
emerge in the future, whether in terms of predictive 
performance, interpretability or model calibration, our 
approach may expand their applicability across varying 
objectives via knowledge distillation. 
DistillSleep equips clinicians with practical verification 
tools, including intra-epoch wavelength analysis, inter-
epoch attention scores, and confidence scores to 
validate and interpret the scoring results. In practice, 
confidence scores can serve as an initial filter, identifying 
epochs with low confidence scores for further manual 
review. Following this initial filtering, interpretability tools 
designed for both intra-epoch and inter-epoch analysis 
can be flexibly applied depending on the specific 
scenario. When both the stage 1 and 2 models provide 
consistent sleep staging results, intra-epoch features 
suffice to explain the model's prediction. In such cases, 
the MWP module offers insights into the contributions of 
different wavelength components to the decision-making 
process, as detailed in Section 3.2.2. Conversely, if the 
stage 2 model's predictions differ from those of the stage 
1 model, inter-epoch interpretability becomes essential. 
In such cases, attention scores help identify which 
adjacent epochs significantly influence the stage 2 
model's final prediction. The combination of verification 
tools makes DistillSleep a robust and transparent 
framework, ultimately enhancing trust and facilitating the 
integration of automatic sleep staging into clinical 
practice. 
Modeling inter-epoch relations enhances prediction 
accuracy as presented in Table 1, but achieving 
immediate results in a real-time deployment requires 
special consideration. While the stage 2 model of 
DistillSleep-S aggregates information across multi-
epochs, we configure it to rely only on the current and 
preceding epochs. This allows each new epoch to be 
classified immediately, without waiting for future data. 
Furthermore, the hybrid design of DistillSleep-S - 
combining a one-to-one framework in stage 1 with a 
many-to-many framework in stage 2 - is better suited for 
deployment than the single model design used by most 
state-of-the-art methods [20-23]. Single model 
architecture poses two main limitations in practical 
applications: start-up delays and computational 
inefficiency. First, single many-to-many models must wait 

to accumulate a full sequence before producing 
predictions, leading to delays at the beginning of the 
sleep monitoring or after interruptions like sensor 
detachment. In contrast, the one-to-one stage 1 model in 
DistillSleep-S provides immediate, per-epoch 
classification results, eliminating start-up delays. Second, 
single-model designs recompute the entire pipeline for 
every new sequence, even if the majority of input data 
overlaps. This redundancy incurs substantial 
computational inefficiency. Conversely, DistillSleep-S 
avoids this inefficiency through stage separation: the 
computationally intensive intra-epoch feature extraction 
(stage 1) is performed only once per epoch, and the 
resulting features are cached and reused by the stage 2 
model as the input sequence slides forward. This caching 
mechanism eliminates redundant computation on 
overlapping data and, as measured in our experiments, 
reduces the e2e latency eightfold from 70.9 ms to 9.1 ms 
on a Raspberry Pi 4B. With these deployment-oriented 
considerations, DistillSleep-S achieves real-time e2e 
latency, as presented in Table 2. 
Our robustness tests on unseen data variability 
demonstrate that, when combined with test-time 
adaptation strategies, DistillSleep can maintain 
competitive predictive performance despite distributional 
shifts in the data. We attribute a large part of the 
remaining performance gap between the adapted model 
and the fully fine-tuned model to label variability, which 
cannot be directly corrected by these adaptation methods. 
Notably, the gap is larger for SleepEDF-78, likely due to 
its use of older Rechtschaffen and Kales criteria [57], 
which can lead to greater label discrepancies. A limitation 
of our current study is that we do not explicitly address 
this label variability. 
Consistent with previous works [18] [20], our analysis 
showed that the choice of EEG lead did not result in 
significant variations in the performance of DistillSleep. 
However, a limitation of our study is that we did not 
perform a deeper analysis to understand the precise 
reasons for these variations. 
While previous studies have included the datasets 
collected from restricted regions (Europe or North 
America), our study expands the regional diversity to 
East Asia, by including the KISS dataset. By doing so, 
we validate that DistillSleep can work well regardless of 
regional demographic biases. Still, there remains regions 
not covered, and we hope more data are collected from 
other regions and publicly shared. The datasets used in 
our study include only healthy individuals and patients 
diagnosed with OSA. However, any subjects exhibiting 
abnormal brain activity are not included, such as those 
with a history of stroke, psychiatric conditions, or 
neurodegenerative disorders. Broader study is 
necessary to confirm whether DistillSleep still could work 
well on the datasets collected from such subjects. 
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Figures 

 
Figure 1. Model architecture. a. Teacher model is structured in two-stage architecture. The first stage captures 
intra-epoch features, while the second stage aggregates inter-epoch information. The first stage model consists of 
convolutional blocks, MWP module and inverted residual blocks. The second stage model is built on hierarchical 
transformer architecture. b. The student model shares a similar architecture with the teacher model, but has fewer 
layers and filters. The second stage model of the student model has a single transformer block. c. Multi-Wavelength 
Pyramid (MWP) captures features from different range of wavelengths from the input signal by applying multiple max-
pooling operations in parallel. The max-poolings are termed as Supra-Alpha, Theta, Delta, and Infra-Delta to reflect 
their respective EEG types of interest. d. Hierarchical transformers in the teacher model efficiently aggregates inter-
epoch relationships. Each hierarchical level consists of two transformer blocks with local attention and patch merging. 
The input sequence is shifted between two transformer blocks. Patch merging aggregates adjacent patches for 
higher-level features. 
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Figure 2. Intra-epoch interpretability. a. Grad-CAM visualization of MWP features on sample signals from each 
stage. Wavelength components considered significant by the model are highlighted and can be used for verification. 
In samples from the Wake and N1 stages, features from smaller pools (Supra-Alpha or Theta) are highlighted, 
whereas for deeper sleep stages, larger pools (Theta or Delta) are emphasized. b. Averaged Grad-CAM results per 
each stage. As sleep deepens, the model tends to place more significance on max-pools with larger pool sizes. The 
data is from PHY dataset. To avoid confusion from misclassified epochs, we only include correctly classified epochs 
in the averaging. 
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Figure 3. Averaged Grad-CAM results on Wake stage after high/lowpass filter and samples with strong 
Infra-Delta component. a-b. Removing long/short wavelength components reduces the significance of large/small 
maxpools, which verifies the interpretability of the MWP. FIR filter is used with 0.5Hz as cutoff frequency for both 
highpass and lowpass filter. a. Averaged Grad-CAM Results on highpass-filtered signal. The significance of Infra-
Delta max-pooled features substantially decreases. b. Averaged Grad-CAM Results on lowpass-filtered signal. 
Contrary to highpass-filter case, the significance of Supra-Alpha max-pooled features diminishes. c-d. These 
samples demonstrate that some epochs from Wake stage are actually dominated by slow waves, which are used 
by the model for classification. 

  



20 / 30 
 

 
Figure 4. Inter-epoch interpretability using attention scores. Attention scores can be used to understand which 
specific epoch influences the target epoch's scoring decision. In each subfigure, the top part represents attention 
scores on sliding sequences and the bottom part shows the aggregated attention scores. Stage 1 prediction is 
provided under the aggregated attention scores.  Blue text indicates epochs where the stage 2 model corrected the 
stage 1 model's prediction. a. Attention score on REM scored sample. b. Attention score on N3 scored sample. 

  



21 / 30 
 

 
Figure 5. Effect of knowledge distillation. a. Knowledge distillation improves the Macro-F1 score of DistillSleep -
S by 1.9-3.4%p, when internal teacher is used. Even when the teacher trained on external datasets is used 
(external teacher), the strong teacher can improve the Macro-F1 score of DistillSleep-S up to 6.8%p. b-c. 
DistillSleep-S achieves competitive predictive performance despite its smaller size and lower computational cost, 
thanks to knowledge distillation from strong DistillSleep-T. As the figures show, DistillSleep-S significantly 
outperforms the expected Macro-F1 score (dotted line) based on its size and computational budget. This contrasts 
with both the baseline model (Baseline-S) and state-of-the-art models, including DistillSleep-T, which adhere 
closely to the regression line.  Macro-F1 on SHHS1 is used for plotting. 
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Figure 6. Averaged Grad-CAM results of DistillSleep-S and Baseline-S. Knowledge distillation adjusts 
DistillSleep-S to have similar internal decision process to DistillSleep-T, as demonstrated from the visualization. The 
result is based on PHY dataset. More results on other datasets are presented in Supplementary materials. a. 
Averaged Grad-CAM results of DistillSleep-S. b. Averaged Grad-CAM results of Baseline-S. 
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Figure 7. Inter-epoch interpretability of DistillSleep-S. Aggregated attention scores from DistillSleep-S and 
Baseline-S are visualized. The same sample epochs are analyzed as in the teacher model (see Figure 4). The hashed 
block in red indicates the incorrectly predicted epoch. Blue text indicates epochs where the stage 2 model corrected 
the stage 1 model's prediction. a. DistillSleep-S on REM epoch. b. Baseline-S on REM epoch. Comparing attention 
scores on REM epoch, DistillSleep-S demonstrates stronger attention scores on epoch 825 and 836 than Baseline-
S, which resembles the teacher model. c. DistillSleep-S on N3 epoch. d. Baseline-S on N3 epoch. For N3 sequences, 
both DistillSleep-S and Baseline-S exhibit a relatively even distribution of attention scores, similar to the teacher 
model. 
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Figure 8. Model calibration results. The reliability diagrams of DistillSleep-T/S and Baseline-S are provided. ECE 
is provided at the right bottom of each subfigure. While DistillSleep-T and Baseline-S shows under-confidence, 
DistillSleep-S shows enhanced model calibration thanks to knowledge distillation. The calibration result is based on 
PHY dataset. a. Calibration results of DistillSleep-T. b. Calibration results of DistillSleep-S. c. Calibration results of 
Baseline-S. 
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Tables 
 
Table 1. Predictive performance of the teacher model (DistillSleep-T). The best approach in each dataset per 
metric is marked as bold, and the second best approach is marked as underline. (*: U-Sleep [20] reports only 
performance on EEG-EOG input and is not directly comparable to DistillSleep-T.) 

Dataset Method 
EEG 

MF1 Acc. Kappa Sens. Spec. 

PHY DistillSleep-T 78.9 80.4 0.733 79.3 94.7 

DistillSleep-T (stage 1) 75.6 77.6 0.696 76.4 94 

SleePyCo [24] 78.9 80.9 0.737 - - 

XSleepNet [22] 78.6 80.3 0.732 78.7 94.6 

U-Time [21] 77.0 - - - - 

U-Sleep* [20] 79.0 - - - - 

SHHS1 DistillSleep-T 81.1 86.8 0.814 82.1 96.3 

DistillSleep-T (stage 1) 74.0 82.7 0.754 73.9 95.1 

SleePyCo [24] 80.7 87.9 0.830 - - 

SleepTransformer [23] 80.1 87.7 0.828 78.7 96.5 

XSleepNet [22] 80.7 87.6 0.826 79.7 96.5 

U-Sleep* [20] 80.0 - - - - 

IITNet [19] 79.8 86.7 0.81 - - 

DCSM DistillSleep-T 81.2 91.4 0.853 81.4 97.6 

DistillSleep-T (stage 1) 77.6 89.6 0.821 77.8 97 

U-Time [21] 79.0 - - - - 

U-Sleep* [20] 81.0 - - - - 

KISS DistillSleep-T 80.0 80.3 0.745 80.6 94.9 

DistillSleep-T (stage 1) 75.6 76.7 0.698 75.9 94.0 

SleepTransformer [23] 77.2 77.8 0.711 76.8 94.1 

  



26 / 30 
 

 
Table 2. On-device feasibility test. On edge devices, the combination of knowledge distillation and quantization 
reduces the e2e latency by up to 162x (Raspberry pi 4B), while preserving the Macro-F1 score at competitive level. 

Device Processors Model Framework Precision 
End-to-end Latency (ms) Memory 

footprint 
(MB) Preprocessing Stage 1 Stage 2 Total 

Workstation 
CPU + GPU DistillSleep-T Tensorflow FLOAT32 0.2 46.8 163.5 210.5 1109 

CPU DistillSleep-S tflite INT8 0.1 2.6 0.6 3.3 73 

Jetson orin 
nano 

CPU + mGPU DistillSleep-T Tensorflow FLOAT32 0.4 96.3 473.1 569.8 1191 

CPU DistillSleep-S tflite INT8 0.4 3.7 1.4 5.5 58 

Raspberry 
pi 4B 

CPU DistillSleep-T Tensorflow FLOAT32 0.9 342.5 1130.5 1473.9 491 

CPU DistillSleep-S tflite INT8 0.9 5.7 2.5 9.1 52 

Coral dev 
board 

CPU + mNPU DistillSleep-S tflite INT8 1.3 4.1 3.2 8.6 59 

* FLOAT32: 32-bit floating point precision, INT8: 8-bit integer precision, mGPU: mobile Graphical Processing Unit, mNPU: mobile Neural Processing Unit. 
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Table 3. Improvement of DistillSleep-S's predictive power from knowledge distillation. The predictive 
performance for internal teacher and external teacher are presented separately. Both the Macro-F1 score and class-
wise F1 scores are reported, with the increase in Macro-F1 score indicated in blue parentheses. Confusion matrices 
are provided in Supplementary Materials. 

Teacher 
Type 

Dataset Method 
EEG 

MF1 W N1 N2 N3 REM 

Internal 
Teacher 

PHY 

DistillSleep-T 78.9 83.6 60.5 84.6 80.4 85.5 

DistillSleep-S 
77.9 

(+2.1) 
82.6 

(+1.1) 
59.1 

(+3.4) 
84.1 

(+1.0) 
80.2 

(+2.4) 
83.5 

(+2.5) 

Baseline-S 75.8 81.5 55.7 83.1 77.8 81.0 

SHHS1 

DistillSleep-T 81.1 91.0 53.7 88.4 83.5 88.8 

DistillSleep-S 
79.7 

(+2.3) 
89.9 

(+1.2) 
51.4 

(+2.6) 
87.6 

(+1.5) 
82.4 

(+4.3) 
87.0 

(+1.7) 

Baseline-S 77.4 88.7 48.8 86.1 78.1 85.3 

DCSM 

DistillSleep-T 81.2 97.5 50.3 84.7 84.9 88.9 

DistillSleep-S 
78.8 

(+3.4) 
96.9 

(+0.5) 
46.1 

(+9.0) 
82.8 

(+3.3) 
84.1 

(+1.5) 
84.2 

(+2.8) 

Baseline-S 75.4 96.4 37.1 79.5 82.6 81.4 

KISS 

DistillSleep-T 80.0 86.6 63.5 80.1 81.1 88.8 

DistillSleep-S 
77.8 

(+1.9) 
84.6 

(+1.8) 
59.9 

(+3.1) 
79.0 

(+1.0) 
80.0 

(+0.9) 
85.4 

(+2.7) 

Baseline-S 75.9 82.8 56.8 78.0 79.1 82.7 

External 
Teacher 

SleepEDF-78 
DistillSleep-S 

76.3 
(+5.0) 

91.8 
(+0.9) 

52.2 
(+9.7) 

84.1 
(+2.3) 

70.8 
(+0.7) 

82.4 
(+11.1) 

Baseline-S 71.3 90.9 42.5 81.8 70.1 71.3 

ISRUC-SG1 
DistillSleep-S 

74.7 
(+4.6) 

84.6 
(+3.7) 

48.6 
(+9.1) 

76.0 
(+2.5) 

86.7 
(+2.3) 

77.3 
(+4.9) 

Baseline-S 70.1 80.9 39.5 73.5 84.4 72.4 

ISRUC-SG2 
DistillSleep-S 

71.1 
(+6.8) 

80.1 
(+10.5) 

47.5 
(+8.6) 

71.4 
(+5.3) 

85.5 
(+2.2) 

70.8 
(+7.2) 

Baseline-S 64.3 69.6 38.9 66.1 83.3 63.6 

ISRUC-SG3 
DistillSleep-S 

77.1 
(+2.1) 

89.0 
(+0.9) 

52.6 
(+7.3) 

78.9 
(-0.1) 

88.1 
(+0.5) 

76.6 
(+1.8) 

Baseline-S 75.0 88.1 45.3 79 87.6 74.8 
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Table 4. Effect of quantization. Predictive performance and model size comparison of DistillSleep-S by different 
frameworks and quantization approaches are presented. Evaluated on PHY. 

Framework Quantization Approach Precision Size (MB) Macro-F1 (%) Diff. 

TensorFlow - FLOAT32 3.019 77.9 - 

TensorFlow Lite - FLOAT32 0.441 77.9 - 

TensorFlow Lite 

QAT with KD 

INT8 0.191 

77.7 0.2 

QAT 76.6 1.3 

PTQ 46.7 31.2 

* FLOAT32: 32-bit floating point precision, INT8: 8-bit integer precision, KD: Knowledge Distillation, QAT: Quantization Aware Training, PTQ: Post Training Quantization. 
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Table 5. Generalizability test. External teacher trained on four large datasets is evaluated on the unseen 
SleepEDF-78 and ISRUC datasets. Performance is shown in zero-shot setting and after applying two test-time 
adaptation methods to improve generalizability. Results from a fully finetuned model are included as an upper-bound 
reference. All values are Macro-F1 scores. 

Dataset External validation 
Test time BN 

adaptation [59] 
TENT [60] 

Full finetuning 
(Upper bound) 

SleepEDF-78 56.5 66.2 66.9 75.9 
ISRUC-SG1 65.3 74.8 75.7 78.6 
ISRUC-SG2 55.9 70.1 71.3 73 
ISRUC-SG3 67.8 75.8 76.3 81.1 
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Table 6. Robustness to EEG lead choice. This table presents a robustness test comparing the performance of 
DistillSleep-T/S and Baseline-S on two additional EEG leads (F3-M2 and O1-M2) against the C4-M1 lead used in 
the main study. 

Teacher/Student EEG lead MF1 Acc. Kappa Sens. Spec. 

DistillSleep-T 

C4-M1 78.9 80.4 0.733 79.3 94.7 

F3-M2 79.5 81 0.742 79.9 94.8 

O1-M2 77 78.8 0.711 77.3 94.2 

DistillSleep-S 

C4-M1 77.9 79.5 0.721 78.3 94.4 

F3-M2 79 80.7 0.735 79 94.7 

O1-M2 76.1 77.9 0.697 75.9 93.9 

Baseline-S 

C4-M1 75.8 78 0.699 76 93.9 

F3-M2 77.4 79.4 0.718 77.8 94.4 

O1-M2 73.9 76 0.673 74.4 93.4 

 


