DistillSleep: Real-Time, On-Device,
Interpretable Sleep Staging from Single-
Channel EEG

Keondo Park', Joopyo Hong', Wooseok Lee'!, Hyun-Woo Shin?*4, and Hyung-
Sin Kim'

Seoul National University Graduate School, Seoul, Republic of Korea, Graduate School of Data
Science '

Obstructive Upper Airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul
National University College of Medicine, Seoul, Republic of Korea ?

OUaR LaB, Inc, Seoul, Republic of Korea?®

Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital,
Seoul, Republic of Korea*

Corresponding authors:

Hyung-Sin Kim, Graduate School of Data Science, Seoul National University, 1, Gwanak-ro,
Gwanak-gu, Seoul (08826), Republic of Korea, Email: hyungkim@snu.ac.kr;

Hyun-Woo Shin, Department of Pharmacology, Seoul National University College of Medicine and

Department of OtorhinolaryngologyHead and Neck Surgery, Seoul National University Hospital,
103 Daehak-ro, Jongno-gu, Seoul (03080), Republic of Korea. Email: charlie@snu.ac.kr

1/30



2 /30



Abstract

Study objectives: Polysomnography (PSG) is the current gold standard for sleep staging but
requires laboratory equipment, multiple sensors, and labor-intensive manual scoring. We
developed DistillSleep, a single-channel EEG framework that delivers accurate, real-time, and
interpretable sleep staging on resource-constrained devices.

Methods: DistillSleep consists of (1) a high-capacity teacher model and (2) a 109 k-parameter
student model designed for edge deployment. Both incorporate a Multi-Wavelength Pyramid
module and Transformer-based architecture to capture intra- and inter-epoch features. Feature-
and prediction-level knowledge distillation transfers the teacher’s expertise to the student.
Training and evaluation used >10,000 overnight recordings from six cohorts (SHHS1, PhysioNet
2018, DCSM, KISS, Sleep-EDF, ISRUC), following AASM guidelines. Performance was assessed
with Macro-F1.

Results: The teacher achieved state-of-the-art Macro-F1 scores (SHHS1 81.1%, PhysioNet
78.9%, DCSM 81.2%, KISS 80.0%) and provided frequency-resolved saliency maps, inter-epoch
context and well-calibrated confidence (ECE 0.07). The student maintained competitive accuracy
(up to 79.7% Macro-F1) while executing <10 ms per 30-second epoch on three embedded
platforms (Raspberry Pi 4, Jetson orin nano, Coral dev board), reducing computational load 115-
fold versus the best prior method (SleePyCo).

Interpretability was transferred intact to the student, offering clinicians frequency-band importance
and inter-epoch context visualizations, and calibration was further improved by 2.7 X.

Conclusions: DistillSleep combines expert-level accuracy, millisecond-scale latency, and
transparent decision logic in a single-channel EEG form factor. These capabilities pave the way
for point-of-care diagnostics, same-night therapy titration, and large-scale home monitoring,
expanding the reach of sleep medicine while retaining clinical trust.

Keywords
Automatic sleep staging, Knowledge distillation, Interpretable deep learning, On-device Al,
Machine Learning, EEG analysis, Big data
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Statement of Significance

Polysomnography is the gold standard for sleep staging, but its high cost, laboratory equipment,
and lengthy manual scoring limit patient access. DistillSleep replaces the typical 12-20-sensor
setup with a single-channel EEG and performs inference in <10 ms per epoch on a Raspberry Pi,
Jetson orin nano, or Coral dev board. Trained and tested on >10,000 overnight recordings from
six independent cohorts, it matches expert accuracy (Macro-F1 up to 80%) and supplies clinicians
with frequency-band saliency, inter-epoch context, and well-calibrated confidence scores. By
combining interpretability, millisecond-level latency, and an open-source code release,
DistillSleep supports point-of-care diagnostics, same-night CPAP titration, and large-scale home
monitoring, substantially broadening the reach of sleep medicine.
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1. Introduction

Sleep disorders are common, costly, and dangerous. An
estimated 936 million adults worldwide suffer from
clinically significant sleep disorders [1], most of which
remain undiagnosed or undertreated [2], costing five
major OECD economies (US, UK, JPN, GER, CAN)
approximately $680 billion annually [3].

Accurate sleep staging - classifying sleep into Wake, N1,
N2, N3, and REM in 30-second epochs - is therefore
critical for diagnosis and therapy titration [4,5].

However, the current gold standard, polysomnography
(PSG), is expensive, intrusive, and capacity-limited.
Patients must endure attachment to 12--20 sensors,
while clinicians require 90--120 minutes per patient for
manual scoring, achieving only approximately 82% inter-
scorer agreement [6-8]. This explains why most of sleep
disorder cases do not receive definitive diagnosis and
timely treatment [peppard2013increased], exacerbating
risks such as cardiovascular disease, daytime
impairment, and increased accidents [9,10].

Real-time, portable, and interpretable sleep-staging
systems can close this gap by enabling point-of-care
decisions and reducing clinical workload. Continuous
staging supports same-night continuous positive airway
pressure (CPAP) titration and closed-loop ventilator
control [11,12]. Automated home reports streamline
patient follow-up, reducing manual scoring burden [13].
Our focus is to realize these benefits with a compact,
interpretable  single-channel electroencephalogram
(EEG) model that performs inference in <10 ms and runs
on bedside monitors or wearable headbands.
Longer-term opportunities, such as adaptive bedroom
thermoregulation [14,15], adjustable beds [16], and
memory-consolidation stimulation [17], become feasible
once trustworthy real-time staging is widely available.
Rapid advances in deep learning have produced sleep
staging models that approach expert accuracy on single-
channel EEG [18-24].

However, most published models remain computationally
heavy black boxes [18-22,24], requiring server-class
GPUs, long inference times, and unclear decision logic,
which are incompatible with bedside monitors, wearables,
and clinicians' need for transparent evidence.

Balancing strong performance and interpretability within
streamlined, on-device models thus remains under-
explored [23]

In this study, we propose DistillSleep, a deep learning
framework for on-device, real-time, and interpretable
automatic sleep staging based on single-channel EEG.
DistillSleep consists of a large, high-performing teacher
model and an exceptionally lightweight student model.
The teacher model (DistillSleep-T) achieves state-of-the-
art performance robustly in four large datasets, with
Macro-F1 scores of 81.1% on SHHS1 [25,26], 78.9% on
Physionet 2018 [27,28], 81.2% on DCSM, and 80.0% on
KISS [29]. To address “black-box” skepticism, it provides
comprehensive interpretability, including frequency-level
importance, inter-epoch relationships, and well-
calibrated confidence scores, ensuring both robust
performance and clinical trustworthiness.

More importantly, the student model (DistillSleep-S) is
designed for on-device real-time applications, featuring
only 109k parameters (59.4 times smaller than the
teacher model) and completing single-epoch inference
within 10 ms on three resource-constrained platforms.
Compared to SleePyCo [24], the best-performing
conventional method, DistillSleep-S reduces model size
by 20.8 times and computation overhead by 114.9 times.
To achieve this efficiency without sacrificing performance,
we design a knowledge distillation process [30-32] that
enables DistillSleep-S to learn not only from the training
data labels but also from the high-performing teacher
model.

DistillSleep-S is validated on the four large public cohorts,
and two additional independent datasets (SleepEDF-78
dataset (78 subjects) [27,33] and ISRUC dataset (118
subjects) [34]), >10,000 overnight studies. Despite its
compact size, DistillSleep-S achieves competitive Macro-
F1 scores up to 79.7% while maintaining comprehensive
interpretability and improving confidence calibration.

Its real-time capability, reliability, and transparency have
the potential to broaden access to sleep diagnostics and
underpin emerging applications that depend on
immediate sleep-stage feedback.

Our code and trained weights are open-sourced at:
https://github.com/KeondoPark/sleep.qit

2. Methods

DistillSleep comprises a high-performing, large-scale
teacher model and an exceptionally compact student
model.

Both models adopt a hybrid two-stage architecture that
combines convolutional neural network (CNN) and
Transformer. The CNN-based stage 1 model effectively
captures intra-epoch features and predicts the sleep
stage for each epoch (one-to-one). Subsequently, the
Transformer-based stage 2 model incorporates inter-
epoch features by taking a sequence of feature vectors
from stage 1 model as input, to produce the refined
sequence of sleep staging results (many-to-many).
Moreover, our tailored architecture in both stages offers
comprehensive interpretability.

While the teacher and student models share architectural
similarities, they are designed for different purposes. The
teacher model (DistillSleep-T) is designed to deliver
precise and robust sleep stage classification results. In
contrast, the student model (DistillSleep-S) focuses on
reducing model size and computational requirements
while maintaining effective performance. To achieve this
significant size reduction without compromising
performance and comprehensive interpretability, we
employed knowledge distillation, a technique that
transfers knowledge from the high-performing teacher
model to the lightweight student model.

2.1 Model Architecture

2.1.1 Teacher Model

The overall architecture of teacher model is presented in
Figure 1a. In the first stage, the model learns intra-epoch
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patterns using a combination of convolutional blocks, a
newly proposed Multi-Wavelength Pyramid (MWP)
module, and inverted residual blocks [35]. The MWP
module is particularly crucial in this stage, allowing the
model to capture multi-scale patterns that correspond to

the diverse frequency characteristics of each sleep stage.

Specifically, each sleep stage is characterized by a
predominant EEG frequency or wave types (Wake:
above 7Hz (Alpha-Gamma), N1: 4-7Hz (Theta), N2: 4-
7Hz (Theta), N3: 0.5-4Hz (Delta), REM: 2-6Hz (Theta-
Delta)) [36-38]. To achieve accurate sleep staging, it is
essential to extract features from these distinct EEG
wavelength ranges.

To this end, as depicted in Figure 1c, the MWP module
defines four fields of views (FoVs): (1) Supra-Alpha
(Alpha, Beta, Gamma and shorter wavelengths), (2)
Theta, (3) Delta, and (4) Infra-Delta (longer wavelengths
beyond Delta). This is achieved through parallel max-
pooling operations with varying pool sizes of 15, 25, 200,
and 400, corresponding to different FoVs.

Concretely, the MWP module applies the four separate
max-pooling operations to features extracted by the third
convolutional block, then concatenates these pooled
features to create a multi-scale representation. This
representation is processed through a series of inverted
residual blocks [35], which not only preserves important
information but also enhances computational efficiency.
In addition, the MWP module offers intra-epoch
interpretability by analyzing the contribution of each max-
pooled feature to the model's predictions.

The stage 2 model focuses on learning temporal
dependencies across consecutive sleep epochs. To
achieve this, this model takes the sequence of feature
vectors from the stage 1 model as input, incorporating
position encoding [39] to provide the sequence order. The
hierarchical transformer blocks, inspired by Swin-
transformer [40,41], constitute the core of the stage 2
model. In this hierarchical setup, lower transformer
blocks employ attention locally, while higher transformer
blocks use attention on broader temporal spans, allowing
the model to progressively capture higher-level
dependencies across the sequence. As presented in
Figure 1d, each hierarchical level consists of two
transformer blocks with identical local window sizes. In
the first transformer block, the sequence is divided by
local windows and attention is applied within each local
window. However, this block alone cannot capture
relationships between patches spanning neighboring
windows. To overcome this limitation, the second block
uses shifted windowing approach: the sequence is
shifted by half the window size to create a new set of local
windows, thereby enhancing the model's ability to
capture more diverse local dependencies. After each pair
of transformer blocks, two adjacent patches are merged
into a single patch, making each patch have a higher-
level feature representation. The model comprises four
hierarchical levels, with the highest level ultimately
applying attention across the entire sequence. Notably,
the highest level omits the shifted transformer block and
patch merging, because it has access to the complete
sequence information. Consequently, the model includes
seven transformer blocks in total. This hierarchical

architecture facilitates the efficient integration of
dependencies across sequential epochs, which is critical
for accurate sleep staging. The output from the
transformer blocks is then passed to a classifier, which
generates the final probability distribution for each class.
Additionally, we implement an ensemble technique,
following previous works [22,23,42,43], to obtain the final
prediction results based on multiple sequence
predictions. Since the stage 2 model uses a sequence of
epochs as input, each epoch appears at different
positions within the sequence. For instance, if the
sequence shifts by one epoch, the last epoch in the
current sequence moves to the second-to-last position in
the next sequence, and so forth. Consequently, each
epoch is predicted multiple times, appearing in
progressively earlier positions across different
sequences. These overlapping predictions, which are
probability vectors for each class, are then averaged to
produce a final, more robust decision for each epoch,
ultimately enhancing the model’s accuracy and stability.

2.1.2 Student Model

The overall architecture of student model is presented in
Figure 1b. The student model is a lightweight version of
the teacher model, maintaining the same two-stage
architecture while being optimized for enhanced
efficiency. Similar to the teacher model, the student
model incorporates convolutional blocks, MWP layers,
and inverted residual blocks in stage 1, and followed by
a transformer-based structure in stage 2. In stage 1, the
student model utilizes fewer inverted residual blocks with
smaller number of filters compared to the teacher model,
allowing for a more compact design. In stage 2, whereas
the teacher model employs hierarchically stacked seven
transformer blocks, the student model simplifies this by
using only a single transformer block with reduced
dimension. The single transformer block relies solely on
global attention, allowing it to capture dependencies
across the entire sequence efficiently. To further reduce
the computational burden, layer normalization and GELU
activation in the teacher model are replaced by batch
normalization and RelLUG6 activation. This reduction in
complexity makes the student model more suitable for
resource-constrained environments while retaining the
essential structure of the teacher model.

2.2 Loss

2.2.1 Weighted Cross Entropy Loss

In sleep datasets the class distribution is commonly
imbalanced. In such cases, using the plain cross entropy
loss for training commonly leads to the biased model
towards majority classes. To tackle this, we used
weighted cross entropy loss, similar to the ones used in
previous studies [44,45]. More specifically, the weighted
cross entropy (WCE) loss is defined as follows:

K Nk

1
Lossycg = — NZ Z W Y10 108 Fi o)
k=1i=1

where k represents each sleep stage, N_k is the total
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number of epochs labeled as the stage k from the training
split, N(= YXX_, N,) is the total number of epochs from
the training split, y;,) and J ) are the ground truth
label and the predicted sleep stage by the model for i-th
epoch in stage k , respectivelyy, and w¥ =

max(logKle,l) is the weight assigned to the loss

corresponding to each sleep stage k. This loss was used
solely to train DistillSleep-T and used in conjunction with
knowledge distillation loss to train DistillSleep-S.

2.2.2 Knowledge Distillation Loss

The knowledge is transferred to DistillSleep-S by using
knowledge distillation loss term along with weighted
cross entropy loss. When the student model is trained to
mimic the teacher model's intermediate representations,
it is referred to as feature-based knowledge distillation.
Conversely, when the student model is trained to
replicate the teacher model's predictions, this process is
referred to as logit-based knowledge distillation. For
feature distillation in stage 1, we used OFD (A
comprehensive Overhaul of Feature Distillation [31]). The
features before MWP and the output features of
penultimate layer were used for feature distillation in
stage 1 model. The feature distillation (FD) loss is
calculated as following:

LoSSppe1 = Z wid,, (MReLU(FT),7(FS))

LEL

where L represents the set of layers to be distilled, [ is
each layer in L and w; is the weight given to each
layer's distillation loss. MReLU is the marginal RelLU
which is the modified ReLU having lower bound less than
zero, F]* are the features of the teacher network and
the student network, and r is the regressor which
projects the student's features to teacher's features for
dimension matching. The partial distance function d,, is
defined as following:

dy(T,S) = Zi e aim(n) {Sc (T, S)) otherwise

where S; is cosine similarity.

For feature distillation in stage 2, we used CCKD
(Correlation congruence for knowledge distillation [46])
and attention similarity loss [47]. Specifically, the FD loss
is calculated as following:

Losspp s, = 21, [WIMSE(FLT(FLT)T. T(Fig)r(Fiq)T)]
+ w,Sc (AT, A5)

where L represents the set of layers to be distilled, [ is
each layer in L and w; is the weight given to each
layer's distillation loss. F]* are the output features of the
teacher and the student network from distilling layer, r is
the regressor for dimension matching and MSE is mean
squared error. A™S are the vectorized global attention,
Sc is cosine similarity and w, is the weight given to
attention similarity loss.

We employed improved variant of DIST (Knowledge

distillation from a stronger teacher [32]) for logit-based
knowledge distillation. Our logit-distillation (LD) loss is
decomposed into two terms: intra-class loss and inter-
class loss. Intra-class loss aligns class-wise probabilities
of the student across all data points in the batch with
those of the teacher, ensuring consistency within each
class. In contrast, inter-class loss encourages the
student's output probability vector for each data point to
closely match that of the teacher. Unlike the original DIST,
we integrate the class-wise weights in both intra- and
inter-class loss to account for class imbalance. Formally,
the LD loss is defined as following:
Loss;p = LoSSipter + LOSSintra

K
1
LosSimira = Ez w d(9C. )
k=1

K
1
Lossiter = Nz Wid(ya,:)' yzgi,:))
k=1
AT,S

where y, are the predicted probability for i-th data

and k-th class, of the teacher/student models. The same
class-wise weight in weighted cross entropy loss is
applied as the weight for the intra-class loss, w*. The
weight for the inter-class loss, w; follows w*, based on
each data point i's ground truth sleep stage k.

d is the distance function between two probability vectors
from teacher and student, which is defined as following:

du,v) =1-p(u,v)

where p(u,v) is Pearson correlation coefficient
between two vectors u and v. We used the same LD
loss to train both stage 1 and stage 2 model.

In this study, two different types of teacher were utilized
depending on the dataset sizes. When the dataset size is
sufficiently large, the teacher can be trained sufficiently
strong and robust using solely the dataset itself. In this
case, the teacher is referred to as the internal teacher.
Both logit-based and feature-based knowledge
distillation methods were used. On the other hand, when
the dataset size is limited, training a large-scale, robust
teacher model becomes challenging. In such cases, we
employed a teacher model trained on large-scale
external datasets, referred to as the external teacher.
While the external teacher provides robust feature
representations, its predicted logits may not perfectly
align with the target dataset's labels due to label
variability[6-8,48]. To address this issue, only the feature-
based distillation was employed for this case.

The final loss term is calculated as follows:

Losspigtin = LoSSycg + Wi pLoss;p + WgpLOSSEp

where w;p, =2 and wgp =1 are used for internal
teacherand w;;, = 0 and wg, =1 are used for external
teacher.

2.3 Model Training Details

DistillSleep was implemented using Tensorflow [49]
framework. We trained both stage 1 and 2 models of
DistillSleep-T/S over 30 epochs, respectively. AdamW
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optimizer was used for training with the learning rate
decreasing from 1e-3 to 1e-6 following a cosine
annealing schedule. To better account for the inherent
uncertainty of the ground truth labels, we used label
smoothing [50] during standalone training. Specifically,
instead of one-hot encoding, the ground truth probability
of class k was defined as following:

vie¥ =y (1—a)+a/K

where y, is the one-hot encoded value for class k, a is
the smoothing parameter and K is total number of
classes. We did not use label smoothing during
knowledge distillation, since probability vectors from
teacher model provide soft target and the effect of label
smoothing is limited, as presented in the previous
research [51]. To increase data diversity, we used
random shifting as data augmentation technique.

2.4 Visualizations of Interpretability

For intra-epoch interpretability, we employed Grad-CAM
[52] to analyze the contributions of each EEG wavelength
range. Grad-CAM calculate the importance of each
feature value using gradient information. Specifically, the
weight(a€) for the feature vector of channel ¢ is computed
as:

C(C

T LLiOFf
i=1

where y, is the predicted score for the ground-truth
class k, Ff is the activation of i-th element in the
feature vector of channel ¢ and L is the length of the
feature vector F¢. The importance of each element [; is
then calculated as:

I; = Max(0, 2. a°Ff)

We applied Grad-CAM to the feature vectors generated
by the MWP module.

For inter-epoch interpretability, we leveraged the
attention scores from the transformer blocks. We
examined the global attention scores in the last
transformer block of the teacher model, and the attention
scores in the single transformer block of the student
model. Furthermore, we aggregated attention scores
across sliding sequences to investigate broader inter-

epoch influences and obtain more robust attention scores.

2.5 Quantization

DistillSleep-S is targeted to be deployed at resource-
constrained devices. To further reduce the model size
before deployment, DistillSleep-S was quantized from
real numbers to integer values. Specifically, following
Jacob et al. [53], we convert all parameters from 32-bit
floating point (FLOAT32) to 8-bit integer precision (INT8)
using the TensorFlow Lite Converter together with
TensorFlow model optimization toolkit [49]. This
quantization not only reduces the model's memory
requirements but also enables efficient execution on
integer-only accelerators, such as mobile NPUs (e.g.

Google EdgeTPU). When quantizing the model's weights
and activations, two different quantization strategies
were considered: Post-Training-Quantization (PTQ) and
Quantization-Aware-Training (QAT). PTQ quantizes the
weights and activations of the model after the training is
completed, based on their distribution. On the other hand,
Quantization-Aware-Training (QAT) fine-tunes the model
while simulating quantization, adapting the weights for
better compatibility with the quantized format. QAT
commonly results in lower quantization error and better
accuracy, but requires additional effort, as the model
must be fine-tuned with quantized parameters.

2.6 Model Calibration

Although deep learning-based models provide fairly high
accuracy, they still cannot provide the perfectly precise
outcomes. Therefore, it is important to provide the
information on how much the model's classification can
be trusted so that the clinicians can assess to what extent
they can rely on the model's results in clinical practice.
The confidence score, defined as the largest value from
the model's probability distribution output, can serve as a
measure of output reliability. To this end, it must be
calibrated to closely reflect the model's true accuracy.
Model calibration [54,55] can be used to evaluate the
proximity between the confidence score and model's true
accuracy. We assessed the calibration using reliability
diagram and expected calibration error (ECE), two of the
most commonly used tools for this purpose. In reliability
diagram, the expected sample accuracy is plotted as a
function of confidence. If the model is perfectly calibrated,
which means the confidence perfectly represents the
accuracy, the plot exactly follows y = x line. When the
model is overconfident, the actual confidence is lower
than the accuracy, resulting in the plot positioned below
y =x line. Conversely, underconfident models show
plots positioned above y = x line. Gap is calculated as
the average accuracy of each confidence bin minus y =
x line. Thus, positive gap is understood as
underconfidence, whereas negative gap is interpreted as
overconfidence. ECE represents how much the
confidence deviates from accuracy, calculated by the
following formula:

M
| By |
ECE = — lacc(By,) — conf (By,)|

m=1

where n is the number of samples, B,, is a confidence
bin and m is the number of confidence bin.

3. Results

3.1 Datasets, Preprocessing and Metrics

To train and evaluate DistillSleep, we utilized four large-
scale datasets that are widely used in sleep research:
Sleep Heart Health Study 1 (SHHS1) [25,26], Physionet
2018 (pHY) [27,28], Danish Center for Sleep Medicine
(DcsM) and Korea Image Sleep Study (KISs) [29].

In addition, we utilized two small datasets to evaluate the
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effectiveness of external teacher-based knowledge
distillation: SleepEDF-78 [27,33] and Institute of
Systems and Robotics, University of Coimbra (ISRUC)
[34].

We followed the same ftrain/val/test split used in
XSleepNet [22] for SHHS1, SleepEDF-78 and PHY. For
DCSM, we followed the train/val/test split used in U-
Sleep [20] and for KIss, we followed the train/val/test
split used in Jeong et al. [29]. For ISRUC, we adhered to
the subject group (SG) division specified in the dataset:
SG1 (100 subjects, 1 record per subject), SG2 (8
subjects, 2 records per subject), and SG3 (10 subjects, 1
record per subject). For SG1, 50 records were used for
knowledge distillation training, 10 records for validation,
and the remaining records for testing. SG2 and SG3 were
used only for evaluation. The details of each dataset are
described in Supplementary Materials.

Following AASM (American Academy of Sleep Medicine)
guidelines [56], we used five sleep stages: Wake, N1, N2,
N3, and REM. For any datasets scored according to the
Rechtschaffen and Kales criteria [57], we rescored the
stages by merging N3 and N4 stages into N3 stage. Any
epochs scored other than the five sleep stages (e.g.
'MOVEMENT' or 'UNKNOWN'") were excluded during
preprocessing. Unlike previous studies [22,23,42,45,58]
that utilized signal filtering or frequency domain
transformation techniques, such as notch filtering,
Butterworth filtering, Short-time Fourier Transform, or
Fast Fourier Transform, we did not apply these non-trivial
methods. Instead, we only standardized the signals and
resample them to 200 Hz if the original sampling
frequency differs. This not only simplifies the training
pipeline but also reduces inference latency by removing
the need for complex transformations. For evaluation and
comparison to other methods, we used unweighted
Macro-F1 score on test split as the major metric.
Evaluation results on other metrics (Accuracy, Cohen's
kappa, Average sensitivity, Average specificity) are also
provided for complementary purposes.

3.2 Teacher Model

3.2.1 Classification Performance

Table 1 compares the performance of DistillSleep-T on
the four large datasets - PHY, SHHS1, DCSM and KISS -
against state-of-the-art methods reported in prior studies
[19-24]. DistillSleep-T achieved the highest Macro-F1
score across all the datasets, highlighting its
effectiveness. While stage 1 model alone delivers
competitive predictive performance, the stage 2 model
further improves the Macro-F1 score by 3.3-7.1%p.
These results demonstrate the ability of the MWP module
to capture the characteristics of different wavelengths
from the input signal at intra-epoch level and that of the
hierarchical transformer to aggregate inter-epoch level
information.

3.2.2 Intra-epoch Interpretability
Figure 2a visualizes the relative importance of different
EEG components using Grad-CAM [52] on features after

MWP module, based on one-epoch samples for each
sleep stage. For Wake and N1 stages, features from
smaller pools (Supra-Alpha or Theta) are treated as more
significant. In contrast, deeper sleep stages, such as N2
and N3, rely more on features from larger pools (Theta or
Delta). This visualization provides clinicians with valuable
insights into the mechanisms driving the model's
predictions.

To evaluate the consistency of the model's interpretability,
we averaged Grad-CAM results from the MWP module
across epochs within the same sleep stage (Figure 2b).
As sleep deepens from Wake to N1, N2, and N3, the
significance of features from larger pools increases.
Interestingly, however, in the Wake stage, not only are
Supra-Alpha features significant but Infra-Delta features
are also highly significant. This finding does not align with
the conventional understanding that the Wake stage is
dominated by short wavelengths [36-38]. This
discrepancy suggests two possibilities: either the Wake-
stage data contains meaningful long-wavelength
components, or the Infra-Delta max-pooling layer is
inadvertently capturing short-wavelength features. To
investigate further, we applied a high-pass filter at 0.5 Hz
to remove long-wavelength components and re-
visualized the Grad-CAM results (Figure 3a). The
visualization shows that the significance of Infra-Delta
features substantially decreased. Conversely, when the
input was low-pass filtered to maintain only long-
wavelength components, Infra-Delta features remained
strongly activated (Figure 3b). These findings confirm
that the MWP module functions as intended, effectively
capturing short-wavelength components through small
pools and long-wavelength components through large
pools. In addition, the observed importance of Infra-Delta
features in the Wake stage (Figure 2b) is due to the actual
presence of meaningful information in the long-
wavelength signals.

To further confirm this observation, we present cases
where the model correctly classifies the Wake stage even
after applying a low-pass filter (Figure 3c and Figure 3d).
Contrary to common assumptions, these cases -
supported by both human perception of the raw signals
and Grad-CAM results for the MWP module -
demonstrate that some Wake-stage epochs are
dominated by long wavelengths. This frequency range
(0-0.5Hz) has traditionally been filtered out in sleep
staging research [18,22,23,42], as it was assumed to
contain only noise. However, our analysis reveals the
deep learning model's ability to extract informative
features from this band. This finding highlights how
interpretable models can reveal previously unexplored
characteristics inherent in the data, offering new insights
into the underlying signals. We will delve deeper into this
point in Section 4.

3.2.3 Inter-epoch Interpretability

We used global attention scores from the last transformer
block of DistillSleep-T to visualize the inter-epoch
relationships leveraged by the model. Figure 4 provides

9 /30



attention score visualizations for sequences centered
around a sample target epoch. In Figure 4a, the target
epoch was initially classified as N1 by the stage 1 model
but adjusted to REM by the stage 2 model after
accounting for relationships with adjacent epochs. The
aggregated attention scores show which neighboring
epochs mainly influenced the decision for the target
epoch: the 825th and 836th epochs, both classified as
REM, consistently exhibit high attention scores, both
within individual sliding sequences and in the aggregated
attention results. This indicates that these REM epochs
contained critical features relevant to REM, providing
essential contextual information at the inter-epoch level.
On the other hand, when the target epoch was scored as
N3 in Figure 4b, no specific neighboring epochs showed
strong attention. Instead, the model displays prominent
self-attention, implying that the target epoch itself
contained distinctive features of N3.

3.3 Student Model

Since the model's representation power typically
decreases with smaller size or reduced computational
burden as shown by the trendlines in Figure 5b and
Figure 5c, it poses a significant challenge to obtain a
lightweight model with good predictive performance. As a
practical solution for this dilemma, we trained
DistillSleep-S via knowledge distillation from DistillSleep-
T. The following subsections present our experimental
results;  DistillSleep-S's  feasibility on resource-
constrained devices, its predictive performance
improvements, and its alignment of internal decision-
making process with DistillSleep-T through knowledge
distillation.

3.3.1 On-device Feasibility

The student model, DistillSleep-S, is extremely
lightweight having 59.2 times fewer parameters and
requiring 19.6 times less computaiton burden compared
to DistillSleep-T. To validate the practicality of its on-
device deployment, we tested DistillSleep-S's end-to-end
(e2e) latency and memory footprint on resource-
constrained devices.

Table 2 presents the e2e latency and peak memory of the
INT8-quantized DistillSleep-S model for single-epoch
classification on various resource-constrained devices
(Raspberry Pi 4B, NVIDIA Jetson Orin Nano and Google
Coral dev board) as well as a high-performance
workstation. Detailed device specifications and
measurement  process are provided in the
Supplementary Materials. For comparison, we also
evaluated DistillSleep-T. The e2e latency of DistillSleep-
T was 1473.9 ms on a Raspberry Pi 4B, 569.8 ms on a
Jetson Orin Nano, and 210.5 ms even on a high-
performance workstation. Additionally, the peak memory
consumption reached up to 1191 MB across the tested
devices. This makes DistillSleep-T, like conventional
methods, unsuitable for real-time applications. In contrast,
DistillSleep-S demonstrated remarkable efficiency with
an e2e latency of 9.1 ms on Raspberry Pi 4B, making it

162 times faster than DistillSleep-T. The e2e latency was
further reduced when mobile accelerators were used: 5.5
ms on Jetson Orin Nano (mobile GPU) and 8.6 ms on
Coral dev board (mobile NPU). In addition, the peak
memory remained below 59 MB on tested devices, 20
times lower than DistillSleep-T, making DistillSleep-S
well-suited for edge-devices with limited memory
capacity.

3.3.2 Classification Performance

While the student model significantly reduces the model
size and computational requirements, this lightweight
architecture can lead to losing representational power
without a tailored training mechanism. When trained
independently, referred to as Baseline-S, the student
model exhibited 3.1-5.9%p lower Macro-F1 scores on
PHY, SHHS1, DCSM, and KISS compared to
DistillSleep-T, as shown in Table 3 and Figure 5a. On the
other hand, when knowledge distillation was employed,
DistillSleep-S showed improved classification
performance as shown in Table 3. The performance
improvement across the four evaluation datasets was
3.4%p on DCSM, 2.3%p on SHHS1, 2.1%p on PHY and
1.9%p on KISS.

On smaller datasets S1eepEDF-78 [33] and ISRUC [34]
we used external teacher for knowledge distillation. This
teacher model was trained using 10,723 PSG records
sourced from the four large datasets (PHY, SHHS1, DCSM,
and KIsS). For ISRUC, ISRUC-SG1 was used for
knowledge distillation training and evaluation, but
ISRUC-SG2 and ISRUC-SG3 were entirely used for
evaluation. Table 3 and Figure 5a demonstrate that
DistillSleep-S improved the Macro-F1 scores by 5.0%p
(SleepEDF-78), 4.6%p (ISRUC-SG1), 6.8%p (ISRUC-
SG2), and 2.1%p (ISRUC-SG3), thanks to external
teacher. The greater performance improvement on
smaller datasets confirm that knowledge distillation using
an external teacher effectively overcomes data
limitations to train a robust model.

A class-wise analysis in Table 3 reveals that N1 and REM
stages benefit the most from knowledge distillation under
both internal and external teachers. This is because,
compared to other sleep stages, N1 and REM stages
require more comprehensive understanding of both intra-
epoch and inter-epoch information for accurate
classification, making them inherently more difficult to
classify. The results verify that complex knowledge was
successfully transferred from the teacher to the student.
Figure 5b and Figure 5c illustrate the Macro-F1 scores of
DistillSleep-T and S compared to those of previous
methods, plotted against the number of parameters and
FLOPs (FLoating point OPerations), respectively. While
Baseline-S and the state-of-the art models generally
align with the regressed line (dotted line) that is fitted to
the number of parameters (or FLOPs) and Macro-F1
scores, DistillSleep-S stands significantly above this line,
exhibiting superior computational efficiency and tackling
the well-known trade-off between model size and
accuracy.
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Table 4 summarizes DistillSleep-S's Macro-F1 scores
under different INT8 quantization strategies, on the PHY
dataset. Relatively simple Post-Training-Quantization
(PTQ) approach resulted in a drastic drop in the Macro-
F1 score. While QAT alone improved the Macro-F1 score
to 76.6%, combining knowledge distillation during the
QAT procedure further boosted the performance to
77.7%, which is only 0.2%p lower than the full-precision
(FLOAT32) model.

3.3.3 Interpretability

Since DistillSleep-T and DistillSleep-S share similar
architecture that offers interpretability, we investigated
whether the student model inherits internal decision
processes of the teacher model through knowledge
distillation. To explore this, we compared the
interpretability of DistillSleep-S and Baseline-S in both
the stage 1 and 2 models, using Grad-CAM and attention
mechanisms, respectively. Figure 6 shows the averaged
Grad-CAM results for DistillSleep-S and Baseline-S,
providing visualizations analogous to the DistillSleep-T
results shown in Figure 2b. When comparing the two
models, we observed that DistillSleep-S exhibits patterns
more closely aligned with those of DistillSleep-T:. for
example, DistillSleep-S' Theta max-pooled features are
more prominent in the N2 stage, and Delta max-pooled
features are more highlighted in the N3 stage, compared
to Baseline-S. This suggests that knowledge distillation
helps align the internal decision processes of
DistillSleep-S's stage 1 model more closely with those of
DistillSleep-T.

For stage 2, we examined the attention scores of
DistillSleep-S and Baseline-S, for the same cases
presented in Figure 4. Notably, for the target epoch
scored as REM in Figure 7b, Baseline-S shows an
attention pattern different from DistillSleep-T, requiring
greater attention to adjacent epochs. In contrast, in
Figure 7a, DistillSleep-S shows stronger attention to the
same epochs that DistillSleep-T focuses on (825th and
836th epochs). For the target epoch scored as N3, the
attention patterns in DistillSleep-T/S and Baseline-S
attention are similar, with relatively weak attention on
adjacent epochs. This observation helps explain why N3
benefits relatively less from knowledge distillation, as
shown in Table 3.

3.4 Model Robustness and Reliability

3.4.1 Model Generalizability

To assess the model's generalizability to external
datasets, we evaluated the external teacher on the
SleepEDF-78 and ISRUC datasets, without retraining,
as presented in Table 5. In this zero-shot setting, the
Macro-F1 score ranged from 55.9 to 67.8%. This
performance drop was then mitigated by test-time
adaptation, which adjusts the pretrained model using
unlabeled test-time data. We adopted two popular
methods: Test-time batch normalization (BN) adaptation
[59] and Test time ENTropy minimization (TENT) [60]. As
shown in Table 5, these methods improved the

performance to 66.2-75.8% after test-time BN adaptation
and 66.9-76.3% after TENT, in Macro-F1 score. For
comparison, a fully finetuned model achieved Macro-F1
of 73.0-81.1%, leaving a final performance gap of 1.7-
9.0%p between the adapted model and this upper-bound
benchmark.

3.4.2 Robustness to EEG-lead choice

To investigate the robustness of DistillSleep to the choice
of EEG lead, we evaluated its performance on the PHY
dataset using two additional EEG leads (F3-M2 and O1-
M2) and compared the results to the C4-M1 lead used in
our main study. The experimental results are summarized
in Table 6. Consistent with previous studies [18,20], the
choice of EEG lead did not result in significant variations
in predictive performance. For DistillSleep-T, compared
to the C4-M1 lead, the F3-M2 lead resulted in 0.6%p
increase in Macro-F1 score, while O1-M2 lead resulted
in 1.9%p drop. The suboptimal performance from an
occipital lead is also consistent with prior research. A
similar tendency was observed for DistillSleep-S and
Baseline-S, where the F3-M2 lead exhibited slightly
improved predictive performance and the O1-M2 lead
showed lower predictive performance.

3.4.3 Model Reliability

Figure 8 exhibits the reliability diagrams of DistillSleep-T,
DistillSleep-S, and Baseline-S, along with the
corresponding ECE, measured on PHY. In these
diagrams, DistillSleep-T shows a strong alignment
between confidence scores and accuracy, although its
confidence levels are slightly lower than the actual
accuracy. Baseline-S exhibits a calibration gap of a
similar magnitude to DistillSleep-T. In contrast,
DistillSleep-S achieves near-perfect calibration: the gap
in the reliability diagram is significantly reduced, and its
ECE is 2.7 X smaller than that of both DistillSleep-T and
Baseline-S. These findings suggest that knowledge
distillation improves the calibration of the student model
by combining the richer information from both training
data and the teacher model.

4. Discussion

Over the past decade, deep-learning systems such as
DeepSleepNet [18], ITNet [19], U-Time [21]/U-Sleep [20],
XSleepNet [22], SleepTransformer [23] and, most
recently, SleePyCo [24] have steadily raised the ceiling
on single-channel sleep-staging accuracy. However,
these models remain computationally heavy. For
example, SleePyCo requires 2.3 million parameters and
11.2 GFLOPs for inference. Such footprints preclude
real-time inference on bedside monitors and wearable.

Since the model's representation power typically
increases with greater size or heavier computational
burden as shown in Figure 5b and Figure 5c, it poses a
significant challenge to obtain the lightweight model with
good predictive performance. As a practical solution for
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this dilemma, DistillSleep introduces a dual-model
framework consisting of performance-oriented teacher
and lightweight student. The teacher model outperforms
other existing models in terms of predictive performance.
This model can be used where the accurate prediction is
important, such as automatic PSG scoring. The student
model, on the other hand, is very lightweight to complete
the single epoch inference in 9.1ms on Raspberry Pi 4B.
Despite its small size, the predictive performance of
DistillSleep-S remains competitive thanks to knowledge
distillation from the strong teacher model. Moreover, the
external teacher, trained on 10,723 PSG records, is
readily employed to train a robust student model even
with as few as 50 training samples. This approach
eliminates the challenges of training a strong teacher
model with limited data, enhancing the practicality. The
student model can be readily used for broader
applications where computation resources are limited or
having timely results is important. Such cases include
breathing control for patients with obstructive sleep
apnea (OSA) or patients on mechanical ventilators [11]
[12], remote sleep monitoring for optimized care delivery
[13], temperature control during sleep [14,15],
automatically adjustable bed [16], and memory
consolidation [17].

Moreover, DistillSleep provides interpretability at both
intra- and inter-epoch levels through the MWP module
and attention mechanisms. These features allow human
users to trace the model's internal decision making
processes, making DistillSleep more reliable and
transparent. For example, according to AASM rules,
Delta waves should constitute at least 20% of an epoch
to be scored as N3 stage. By observing MWP's Delta
activation in N3-scored epochs, clinicians can verify if the
model is focusing on Delta waves as expected. Another
example includes verifying REM stages using attention
scores. AASM rules state that if any prior epoch is scored
as REM and no stopping criteria exist in the following
epochs, the target epoch should be scored as REM even
in the absence of clear REM indicators in it. By examining
attention scores as in Figure 4a, clinicians can confirm
whether these rules are consistently applied.
Additionally, interpretability analysis offers deeper insight
into the unexplored potential of deep learning models. As
demonstrated in Section 3.2.2, the MWP module
provides an understanding of how the model utilizes slow
waves in the 0-0.5 Hz band - previously dismissed as

irrelevant to sleep staging - for classifying the Wake stage.

This counterintuitive observation may stem from the
model's reliance on single-channel EEG data, unlike the
AASM guidelines, which utilize multimodal full PSG
signals. Even in scenarios where other signals, such as
EEG from different positions, EOG, EMG, or ECG play a
more critical role than the target EEG channel in
conventional sleep staging, single-channel models are
forced to extract all relevant features solely from the
target EEG channel. Consequently, transparent
interpretation of these models can illuminate how
information from other modalities is indirectly encoded

within the target EEG signals and which EEG features
are prioritized when other channels are eliminated,
offering unique insights on the model's decision-making
process.

Previous research examined the EEG components in
infra-Delta band, known as infra-slow oscillations (ISOs)
[61] [aladjalova1957infra]. Studies have shown that these
oscillations are related to autonomic control system [62]
[63] and are sensitive to stress from cognitive tasks [64]
[prokhorov2023changes]. Our results indicate that deep
learning models may differentiate patterns of 1SOs
between waking and sleeping states. Another possible
explanation is that this Wake-stage classification may
come from combined eye movements or blinking, as
stated in the AASM guidelines [56].

Although these are not explicit EEG scoring criteria,
DistillSleep may effectively identify and utilize inherent
EEG features related to these activities from the raw data
for its Wake-stage classification. The above example
demonstrates the value of an interpretable model. The
‘black-box’ nature of deep learning models veils which
data characteristics serve as meaningful predictive
features, resulting in the exclusion of potentially
important information from the raw data by following
conventional preprocessing. For instance, filtering out 0-
0.5Hz frequency range from the raw signal, as done in
prior studies [18,22,23,42], results in misclassification of
certain samples as presented in Figure 3c and Figure 3d.
In contrast, interpretable models enable users to not only
gain insights into the underlying mechanisms of the
model's predictions but also identify the important data
characteristics, ultimately enabling more effective
preprocessing strategies.

Previous studies have proposed interpretable sleep
staging models, employing techniques such as layerwise
relevance propagation on time-frequency images [65],
attention scores in transformer blocks [23] [66] or eigen-
CAM on screen-captured PSG images [29] [43]. However,
these methods focused on large-scale models and did
not explore whether the interpretability is maintained after
model compression. Our interpretability analysis verifies
that when trained independently, a small model focuses
on different features compared to the large-scale teacher
model. In contrast, DistillSleep-S addresses the limitation
via knowledge distillation, effectively preserving the
internal decision-making processes of the teacher model
after model size reduction, as shown in Figure 6 and
Figure 7. These findings indicate that knowledge
distillation not only enhances DistillSleep-S's predictive
performance but also ensures consistent interpretative
patterns with DistillSleep-T for identical inputs. This
synchronized behavior allows practitioners to confidently
deploy either model interchangeably based on specific
task requirements, knowing the underlying reasoning
remains consistent. For example, DistillSleep-S can be
utiized for latency-sensitive applications  while
DistillSleep-T can be employed for scenarios demanding
higher accuracy.

In addition, an improvement in model calibration was
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observed in DistillSleep-S, addressing the
underconfidence of its teacher. Sleep staging inherently
involves a high degree of uncertainty, making it crucial to
effectively capture this uncertainty for both better
performance and calibration [67,68]. Knowledge
distillation, with its use of soft labels, naturally embeds
uncertainty, making it well-suited for this inherently
uncertain task. Interestingly, while previous works have
noted that knowledge distillation mitigates
overconfidence in student models [51], our results show
that it can also improve underconfidence. To our
knowledge, this is the first study to apply knowledge
distillation for sleep staging, while demonstrating that
interpretability is effectively transferred and model
calibration is improved. Even when stronger models can
emerge in the future, whether in terms of predictive
performance, interpretability or model calibration, our
approach may expand their applicability across varying
objectives via knowledge distillation.

DistillSleep equips clinicians with practical verification
tools, including intra-epoch wavelength analysis, inter-
epoch attention scores, and confidence scores to
validate and interpret the scoring results. In practice,
confidence scores can serve as an initial filter, identifying
epochs with low confidence scores for further manual
review. Following this initial filtering, interpretability tools
designed for both intra-epoch and inter-epoch analysis
can be flexibly applied depending on the specific
scenario. When both the stage 1 and 2 models provide
consistent sleep staging results, intra-epoch features
suffice to explain the model's prediction. In such cases,
the MWP module offers insights into the contributions of
different wavelength components to the decision-making
process, as detailed in Section 3.2.2. Conversely, if the
stage 2 model's predictions differ from those of the stage
1 model, inter-epoch interpretability becomes essential.
In such cases, attention scores help identify which
adjacent epochs significantly influence the stage 2
model's final prediction. The combination of verification
tools makes DistillSleep a robust and transparent
framework, ultimately enhancing trust and facilitating the
integration of automatic sleep staging into clinical
practice.

Modeling inter-epoch relations enhances prediction
accuracy as presented in Table 1, but achieving
immediate results in a real-time deployment requires
special consideration. While the stage 2 model of
DistillSleep-S aggregates information across multi-
epochs, we configure it to rely only on the current and
preceding epochs. This allows each new epoch to be
classified immediately, without waiting for future data.
Furthermore, the hybrid design of DistillSleep-S -
combining a one-to-one framework in stage 1 with a
many-to-many framework in stage 2 - is better suited for
deployment than the single model design used by most
state-of-the-art methods [20-23]. Single model
architecture poses two main limitations in practical
applications: start-up delays and computational
inefficiency. First, single many-to-many models must wait

to accumulate a full sequence before producing
predictions, leading to delays at the beginning of the
sleep monitoring or after interruptions like sensor
detachment. In contrast, the one-to-one stage 1 model in
DistillSleep-S provides immediate, per-epoch
classification results, eliminating start-up delays. Second,
single-model designs recompute the entire pipeline for
every new sequence, even if the majority of input data
overlaps. This redundancy incurs substantial
computational inefficiency. Conversely, DistillSleep-S
avoids this inefficiency through stage separation: the
computationally intensive intra-epoch feature extraction
(stage 1) is performed only once per epoch, and the
resulting features are cached and reused by the stage 2
model as the input sequence slides forward. This caching
mechanism eliminates redundant computation on
overlapping data and, as measured in our experiments,
reduces the e2e latency eightfold from 70.9 ms to 9.1 ms
on a Raspberry Pi 4B. With these deployment-oriented
considerations, DistillSleep-S achieves real-time e2e
latency, as presented in Table 2.

Our robustness tests on unseen data variability
demonstrate that, when combined with test-time
adaptation strategies, DistillSleep can maintain

competitive predictive performance despite distributional
shifts in the data. We attribute a large part of the
remaining performance gap between the adapted model
and the fully fine-tuned model to label variability, which
cannot be directly corrected by these adaptation methods.
Notably, the gap is larger for S1eepEDF-78, likely due to
its use of older Rechtschaffen and Kales criteria [57],
which can lead to greater label discrepancies. A limitation
of our current study is that we do not explicitly address
this label variability.

Consistent with previous works [18] [20], our analysis
showed that the choice of EEG lead did not result in
significant variations in the performance of DistillSleep.
However, a limitation of our study is that we did not
perform a deeper analysis to understand the precise
reasons for these variations.

While previous studies have included the datasets
collected from restricted regions (Europe or North
America), our study expands the regional diversity to
East Asia, by including the K1Ss dataset. By doing so,
we validate that DistillSleep can work well regardless of
regional demographic biases. Still, there remains regions
not covered, and we hope more data are collected from
other regions and publicly shared. The datasets used in
our study include only healthy individuals and patients
diagnosed with OSA. However, any subjects exhibiting
abnormal brain activity are not included, such as those
with a history of stroke, psychiatric conditions, or
neurodegenerative  disorders. Broader study is
necessary to confirm whether DistillSleep still could work
well on the datasets collected from such subjects.
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Figure 1. Model architecture. a. Teacher model is structured in two-stage architecture. The first stage captures
intra-epoch features, while the second stage aggregates inter-epoch information. The first stage model consists of
convolutional blocks, MWP module and inverted residual blocks. The second stage model is built on hierarchical
transformer architecture. b. The student model shares a similar architecture with the teacher model, but has fewer
layers and filters. The second stage model of the student model has a single transformer block. ¢. Multi-Wavelength
Pyramid (MWP) captures features from different range of wavelengths from the input signal by applying multiple max-
pooling operations in parallel. The max-poolings are termed as Supra-Alpha, Theta, Delta, and Infra-Delta to reflect
their respective EEG types of interest. d. Hierarchical transformers in the teacher model efficiently aggregates inter-
epoch relationships. Each hierarchical level consists of two transformer blocks with local attention and patch merging.
The input sequence is shifted between two transformer blocks. Patch merging aggregates adjacent patches for

higher-level features.
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Figure 2. Intra-epoch interpretability. a. Grad-CAM visualization of MWP features on sample signals from each
stage. Wavelength components considered significant by the model are highlighted and can be used for verification.
In samples from the Wake and N1 stages, features from smaller pools (Supra-Alpha or Theta) are highlighted,
whereas for deeper sleep stages, larger pools (Theta or Delta) are emphasized. b. Averaged Grad-CAM results per
each stage. As sleep deepens, the model tends to place more significance on max-pools with larger pool sizes. The
data is from PHY dataset. To avoid confusion from misclassified epochs, we only include correctly classified epochs
in the averaging.
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Infra-Delta component. a-b. Removing long/short wavelength components reduces the significance of large/small
maxpools, which verifies the interpretability of the MWP. FIR filter is used with 0.5Hz as cutoff frequency for both
highpass and lowpass filter. a. Averaged Grad-CAM Results on highpass-filtered signal. The significance of Infra-
Delta max-pooled features substantially decreases. b. Averaged Grad-CAM Results on lowpass-filtered signal.
Contrary to highpass-filter case, the significance of Supra-Alpha max-pooled features diminishes. c-d. These
samples demonstrate that some epochs from Wake stage are actually dominated by slow waves, which are used
by the model for classification.
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Figure 4. Inter-epoch interpretability using attention scores. Attention scores can be used to understand which
specific epoch influences the target epoch's scoring decision. In each subfigure, the top part represents attention
scores on sliding sequences and the bottom part shows the aggregated attention scores. Stage 1 prediction is
provided under the aggregated attention scores. Blue text indicates epochs where the stage 2 model corrected the
stage 1 model's prediction. a. Attention score on REM scored sample. b. Attention score on N3 scored sample.
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Figure 5. Effect of knowledge distillation. a. Knowledge distillation improves the Macro-F1 score of DistillSleep -
S by 1.9-3.4%p, when internal teacher is used. Even when the teacher trained on external datasets is used
(external teacher), the strong teacher can improve the Macro-F1 score of DistillSleep-S up to 6.8%p. b-c.
DistillSleep-S achieves competitive predictive performance despite its smaller size and lower computational cost,
thanks to knowledge distillation from strong DistillSleep-T. As the figures show, DistillSleep-S significantly
outperforms the expected Macro-F1 score (dotted line) based on its size and computational budget. This contrasts
with both the baseline model (Baseline-S) and state-of-the-art models, including DistillSleep-T, which adhere

closely to the regression line.

Macro-F1 on SHHS1 is used for plotting.
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Figure 6. Averaged Grad-CAM results of DistillSleep-S and Baseline-S. Knowledge distillation adjusts
DistillSleep-S to have similar internal decision process to DistillSleep-T, as demonstrated from the visualization. The
result is based on PHY dataset. More results on other datasets are presented in Supplementary materials. a.
Averaged Grad-CAM results of DistillSleep-S. b. Averaged Grad-CAM results of Baseline-S.
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Figure 7. Inter-epoch interpretability of DistillSleep-S. Aggregated attention scores from DistillSleep-S and
Baseline-S are visualized. The same sample epochs are analyzed as in the teacher model (see Figure 4). The hashed
block in red indicates the incorrectly predicted epoch. Blue text indicates epochs where the stage 2 model corrected
the stage 1 model's prediction. a. DistillSleep-S on REM epoch. b. Baseline-S on REM epoch. Comparing attention
scores on REM epoch, DistillSleep-S demonstrates stronger attention scores on epoch 825 and 836 than Baseline-
S, which resembles the teacher model. c. DistillSleep-S on N3 epoch. d. Baseline-S on N3 epoch. For N3 sequences,
both DistillSleep-S and Baseline-S exhibit a relatively even distribution of attention scores, similar to the teacher

model.
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Figure 8. Model calibration results. The reliability diagrams of DistillSleep-T/S and Baseline-S are provided. ECE
is provided at the right bottom of each subfigure. While DistillSleep-T and Baseline-S shows under-confidence,
DistillSleep-S shows enhanced model calibration thanks to knowledge distillation. The calibration result is based on
PHY dataset. a. Calibration results of DistillSleep-T. b. Calibration results of DistillSleep-S. ¢. Calibration results of
Baseline-S.
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Tables

Table 1. Predictive performance of the teacher model (DistillSleep-T). The best approach in each dataset per
metric is marked as bold, and the second best approach is marked as underline. (*: U-Sleep [20] reports only

erformance on EEG-EOG input and is not directly comparable to DistillSleep-T.)
EEG
Dataset Method MF1 Acc. Kappa | Sens. Spec.
PHY DistillSleep-T 78.9 80.4 0.733 79.3 94.7
DistillSleep-T (stage 1) 75.6 77.6 0.696 76.4 94
SleePyCo [24] 78.9 80.9 0.737 - -
XSleepNet [22] 78.6 80.3 0.732 78.7 94.6
U-Time [21] 77.0 - - - -
U-Sleep* [20] 79.0 - - - -
SHHS1 DistillSleep-T 81.1 86.8 0.814 82.1 96.3
DistillSleep-T (stage 1) 74.0 82.7 0.754 73.9 95.1
SleePyCo [24] 80.7 87.9 0.830 - -
SleepTransformer [23] 80.1 87.7 0.828 78.7 96.5
XSleepNet [22] 80.7 87.6 0.826 79.7 96.5
U-Sleep* [20] 80.0 - - - -
IITNet [19] 79.8 86.7 0.81 - -
DCSM DistillSleep-T 81.2 91.4 0.853 81.4 97.6
DistillSleep-T (stage 1) 77.6 89.6 0.821 77.8 97
U-Time [21] 79.0 - - - -
U-Sleep* [20] 81.0 - - - -
KISS DistillSleep-T 80.0 80.3 0.745 80.6 94.9
DistillSleep-T (stage 1) 75.6 76.7 0.698 75.9 94.0
SleepTransformer [23] 77.2 77.8 0.711 76.8 941
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Table 2. On-device feasibility test. On edge devices, the combination of knowledge distillation and quantization
reduces the e2e latency by up to 162x (Raspberry pi 4B), while preserving the Macro-F1 score at competitive level.

End-to-end Latency (ms) Memory
Device Processors Model Framework | Precision ] footprint
Preprocessing | Stage 1 | Stage 2 | Total (MB)
. CPU + GPU DistillSleep-T Tensorflow FLOAT32 0.2 46.8 163.5 210.5 1109
Workstation — -
CPU DistillSleep-S tflite INT8 0.1 2.6 0.6 3.3 73
Jetson orin | CPU + mGPU | DistiliSleep-T | Tensorflow | FLOAT32 0.4 96.3 4731 569.8 1191
nano CPU DistillSleep-S tflite INT8 0.4 3.7 1.4 5.5 58
Raspberry CPU DistillSleep-T | Tensorflow | FLOAT32 0.9 3425 11305 | 1473.9 491
pi 4B CPU DistillSleep-S tflite INT8 0.9 5.7 25 9.1 52
Coral dev g .
board CPU + mNPU DistillSleep-S tflite INT8 1.3 41 3.2 8.6 59

* FLOAT32: 32-bit floating point precision, INT8: 8-bit integer precision, mGPU: mobile Graphical Processing Unit, mNPU: mobile Neural Processing Unit.
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Table 3. Improvement of DistillSleep-S's predictive power from knowledge distillation. The predictive
performance for internal teacher and external teacher are presented separately. Both the Macro-F1 score and class-
wise F1 scores are reported, with the increase in Macro-F1 score indicated in blue parentheses. Confusion matrices

are provided in Supplementary Materials.

EEG
Teacher Dataset Method
Type MF1 w N1 N2 N3 REM
DistillSleep-T | 78.9 83.6 60.5 84.6 80.4 85.5
o 77.9 82.6 59.1 84.1 80.2 83.5
PHY DistillSleep-S | 1954y | (+1.4) | (+34) | (+1.0) | (+2.4) | (+2.5)
Baseline-S 75.8 81.5 55.7 83.1 77.8 81.0
DistillSleep-T | 81.1 91.0 53.7 88.4 83.5 88.8
o 79.7 89.9 51.4 87.6 82.4 87.0
SHHS1 DistillSleep-S | (153 | (+1.2) | (+2.6) | (+1.5) | (+4.3) | (+1.7)
Internal Baseline-S 77.4 88.7 48.8 86.1 78.1 85.3
Teacher DistillSleep-T 81.2 97.5 50.3 84.7 84.9 88.9
o 78.8 96.9 46.1 82.8 84.1 84.2
DCSM DistillSleep-S | 134y | (+05) | (+9.0) | (+3.3) | (+1.5) | (+2.8)
Baseline-S 75.4 96.4 37.1 79.5 82.6 81.4
DistillSleep-T | 80.0 86.6 63.5 80.1 81.1 88.8
o 77.8 84.6 59.9 79.0 80.0 85.4
KISS DistillSleep-S | 119y | (+1.8) | (+34) | (+1.0) | (+0.9) | (+2.7)
Baseline-S 75.9 82.8 56.8 78.0 791 82.7
o 76.3 91.8 52.2 84.1 70.8 82.4
DistillSleep-S
SleepEDF-78 P (+5.0) (+0.9) (+9.7) (+2.3) (+0.7) | (+11.1)
Baseline-S 71.3 90.9 425 81.8 70.1 71.3
o 74.7 84.6 48.6 76.0 86.7 77.3
DistillSleep-S
ISRUC-SG1 P (+4.6) (+3.7) (+9.1) (+2.5) (+2.3) (+4.9)
External Baseline-S 70.1 80.9 39.5 73.5 84.4 72.4
Teacher Distilisleep-s | 711 80.1 475 714 85.5 70.8
ISRUC-SG2 (+6.8) | (+10.5) | (+8.6) (+5.3) (+2.2) (+7.2)
Baseline-S 64.3 69.6 38.9 66.1 83.3 63.6
o 771 89.0 52.6 78.9 88.1 76.6
DistillSleep-S
ISRUC-SG3 P (+2.1) (+0.9) (+7.3) (-0.1) (+0.5) (+1.8)
Baseline-S 75.0 88.1 45.3 79 87.6 74.8
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Table 4. Effect of quantization. Predictive performance and model size comparison of DistillSleep-S by different
frameworks and quantization approaches are presented. Evaluated on PHY.

Framework Quantization Approach Precision Size (MB) Macro-F1 (%) Diff.
TensorFlow - FLOAT32 3.019 77.9 -
TensorFlow Lite - FLOAT32 0.441 77.9 -

QAT with KD 7.7 0.2

TensorFlow Lite QAT INT8 0.191 76.6 1.3

PTQ 46.7 31.2

* FLOAT32: 32-bit floating point precision, INT8: 8-bit integer precision, KD: Knowledge Distillation, QAT: Quantization Aware Training, PTQ: Post Training Quantization.
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Table 5. Generalizability test. External teacher trained on four large datasets is evaluated on the unseen
SleepEDF-78 and ISRUC datasets. Performance is shown in zero-shot setting and after applying two test-time
adaptation methods to improve generalizability. Results from a fully finetuned model are included as an upper-bound
reference. All values are Macro-F1 scores.

Dataset External validation aIIils;t;'t'l‘;i ?5":9] TENT [60] (FJ,!.',:;?"JL‘SL'L%
SleepEDF-78 56.5 66.2 66.9 75.9
TSRUC-SG1 653 748 75.7 78.6
TSRUC-5G2 55.9 70.1 713 73
TSRUC-5G3 67.8 75.8 76.3 81.1
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Table 6. Robustness to EEG lead choice. This table presents a robustness test comparing the performance of
DistillSleep-T/S and Baseline-S on two additional EEG leads (F3-M2 and O1-M2) against the C4-M1 lead used in
the main study.

Teacher/Student EEG lead MF1 Acc. Kappa Sens. Spec.

C4-M1 78.9 80.4 0.733 79.3 94.7

DistillSleep-T F3-M2 79.5 81 0.742 79.9 94.8
01-M2 77 78.8 0.711 77.3 94.2

C4-M1 77.9 79.5 0.721 78.3 94.4

DistillSleep-S F3-M2 79 80.7 0.735 79 94.7
01-M2 76.1 77.9 0.697 75.9 93.9

C4-M1 75.8 78 0.699 76 93.9

Baseline-S F3-M2 77.4 79.4 0.718 77.8 94.4
01-M2 73.9 76 0.673 74.4 93.4
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