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Motivation: Domain shift ST

; Video shows 8-car pileup after a
°
DNN models are Wldely used recently' Tesla allegedly using Full Self-Driving
® They, however, often does not perform  stoppedin a highway tunnel
well when environment changes! i s
® Domain shift is the main reason for the

performance drop.
o Training data domain # Test data domain

YBILD TNL CTREB (16.13.39)

Video obtained by The Intercept appears to show a Tesla causing an 8-car pileup on
November 24,2022. The Intercept reporter Ken Klippenstein on Twitter
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Motivation: Domain shift

e Many approaches to tackle domain shift.
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Out-of-Distribution (OOD) detection
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Motivation: Domain shift

Tries to make a smarter DNN model, but is it the best?
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Motivation: Domain shift ST

® Human vision system

It’s too bright!!
I can’t see anything!!

It’s too close!!
I can’t see anything!!
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Motivation: Domain shift ST

® Human vision system

Current solution

4

Read more books and be smart :)

It’s too bright!!
I can’t see anything!!

It’s too close!!
I can’t see anything!!
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Motivation: Domain shift

“Best solution?"
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Motivation: Domain shift

“Easier and better solution!”

Unexplored Faces of Robustness and Out-of-Distribution: Covariate Shifts in Environment and Sensor Domains @ SNU Graduate School of Data Science 9



Motivation: Domain shift (5T

a8 s
® Computer vision system

Real-world image acquisition process Scene understanding

Camera .
Sensor Acquired
Image
e

Image
Processing

DNN model

&» —
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Motivation: Domain shift (5T

a8 s
® Computer vision system

Real-world image acquisition process Scene understanding

Camera .
Sensor Acquired
Image
e
f >
Image
Processing
e DNN model
Canoprg:mon Environment / Sensor Domain Digital Domain
Perturbation Ir_nRa’ QE’NS t ImageNet-ES (ours) Im_agella\let Deep-Augment
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ES-Studio ST

e Controllable testbed for Environment and Sensor domain

o Capture real-world perturbations related to light (On/Off) and camera parameters
(1ISO / Shutter speed / Aperture)
O Ensure reproducibility

[ ES-Studio Design Description] [ Photo of ES-Studio ]

Camera control Screen control
(sensor parameters, capture command) (change displayed image)

Light control
(on/off)

X 2

—

Ventilation outlet

100cm

Dark room (150 x 150 x 200 ¢m)

Figure 4. Ilustration of the ES-Studio setup External Internal
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ImageNet-ES dataset ST

y A& 4
® Covariate shift datasets from the environment & sensor domain

ISO Shutter Speed Aperture

Auto Exposure (5 shots)

1000 sampled images x . . x . ]
Val. Set from ImageNet 2 Light options (On / Off) (64 + 5) Camera parameter options gy 138K Images
Test Set 1000 sampled images x 2 Light options (On / Off) x (27 + 5) Camera parameter options S— 64K Images
from ImageNet gnt op P P E—— &

Total 202K Images
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ImageNet-ES dataset ST

® Sample images from test set:

A AE Manual parameter settings
to E
(Auto )I(posure)

Light

On
Original Image Light
(From ImageNet) Off
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Experiments: Out-of-Distribution (OOD) detection /T

® \What is the best OOD definition?

® Semantics-centric framework

Most widely used.

Any samples not included in the class definition of training domain => 00D
Treating C-OOD (Covariate shifted data, e.g. ImageNet-ES) as OOD or ID in entirety.
SOTA OOD detection techniques (ViM, ODIN, etc.) developed to work well under
this framework.

O O O O
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Experiments: Out-of-Distribution (OOD) detection /T

® Semantics-centric framework
o Test on three OOD detection techniques: ViM, MSP, ODIN

o Model: EfficientNet-BO
o Three datasets
= |n-Distribution (ID): Tiny-ImageNet
= Semantics OOD (S-O0D): Texture-O
= Covariate shifted OOD (C-O0D): ImageNet-ES

MSP ODIN
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Experiments: Out-of-Distribution (OOD) detection dBSI'

® Semantics-centric framework
o Test on three OOD detection techniques: ViM, MSP, ODIN

o Model: EfficientNet-BO
o Three datasets
" |n-Distribution (ID): Tiny-ImageNet
= Semantics OOD (S-O0D): Texture-O
= Covariate shifted OOD (C-O0D): ImageNet-ES

Clear separation between
ID and S-OOD

Clear separation between

Clear separation between
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Experiments: Out-of-Distribution (OOD) detection /T

® Semantics-centric framework
o Test on three OOD detection techniques: ViM, MSP, ODIN

o Model: EfficientNet-BO
o Three datasets
= |n-Distribution (ID): Tiny-ImageNet
= Semantics OOD (S-O0D): Texture-O
= Covariate shifted OOD (C-O0D): ImageNet-ES

No clear distinction on ImageNet-ES!

ODIN

ViM
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Experiments: Out-of-Distribution (OOD) detection /T

® Alternative framework: Model-Specific OOD framework

o Model specific acceptance or rejection (MS-A or MS-R)
o MS-A: correctly classified by model (ID+, C-O0D-)
o MS-R: misclassified by model (S-O0D, ID-, C-O0D-)
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Experiments: Out-of-Distribution (OOD) detection /T

® Alternative framework: Model-Specific OOD framework
o Test on three OOD detection techniques: ViM, MSP, ODIN
O Model: EfficientNet-BO
o Two datasets
= |n-Distribution (ID): Tiny-ImageNet
= Covariate shifted OOD (C-O0D): ImageNet-ES
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Experiments: Out-of-Distribution (OOD) detection g?sr

e Alternative framework: Model-Specific OOD framework
o Test on three OOD detection techniques: ViM, MSP, ODIN
o Model: EfficientNet-BO
o Two datasets
" |n-Distribution (ID): Tiny-ImageNet
= Covariate shifted OOD (C-O0D): ImageNet-ES

Still, no clear distinction between Clear separation between ImageNet-
ImageNet-ES+ and ImageNet-ES- ES+ and ImageNet-ES-
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Experiments: Out-of-Distribution (OOD) detection d?sr

e Evaluation of OOD detection methods
o Do current OOD methods work consistently on real covariate shift samples?

[Consistency] OOD score - Classification Accuracy

( EfficientNet-BO )

10.0 o - o
% w06 06 2 T I o
Sy 7 | xxxx::§ o« o oo [0
§§ 5o WX R *‘,;*‘* [P Classical methods (MSP or ODIN) show
(V)] * @) . .
<n 25| ¥ ok X .o more desirable correlation
0O x ¥ x * %xViIM  xAsH xooN |24
%IJO 0.01 ¥* % 5™ « ReAct % MSP E
e -2.5 1 *;# XX x XX »(”K*x*w _0‘25 .
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Figure 6. Each point represents the OOD score measured on the the model

single parameter setting of ImageNet-ES.

samples as ID which are misclassified by
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Experiments: Out-of-Distribution (OOD) detection d%gl'

With ImageNet-ES, we found that no single method is
superior in both C-OOD and S-OOD detection.
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Experiments: Domain generalization IST

a e
® How to enhance the robustness in the environmental and sensor
domain (ImageNet-ES)?
o Basic digital augmentation: color-jitter, solarize and posterize

o Advanced digital augmentation: DeepAugment and AugMix
O Include real-world perturbed data (/mageNet-ES) for finetuning
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Experiments: Domain generalization (IST

y A& 4
® How to enhance the robustness in the environmental and sensor

domain (ImageNet-ES)?

o Basic digital augmentation: color-jitter, solarize and posterize

o Advanced digital augmentation: DeepAugment and AugMix

O Include real-world perturbed data (/mageNet-ES) for finetuning

Table 2. Evaluation with different robustness enhancing strategies.
The result is based on ResNet-50. (IN: ImageNet)

ID Comp.au Basic Advanced Incl. Eval dataset
P-AUE " digital aug digital aug ImageNet-ES IN  IN-C  ImageNet-ES
v 858 | 51.0 49.6
v v 858 | 51.7 50.4
v v v 855 | 57.4 49.1

Digital augmentation improves the
robustness on digitally corrupted
images(ImageNet-C),

AN B W N -

But NOT on real-world
perturbed images.

[££) SNU Graduate School of Data Science 28
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Experiments: Domain generalization d?sr

y A& 4
® How to enhance the robustness in the environmental and sensor

domain (ImageNet-ES)?

o Basic digital augmentation: color-jitter, solarize and posterize

o Advanced digital augmentation: DeepAugment and AugMix

o Include real-world perturbed data (/mageNet-ES) for finetuning

Table 2. Evaluation with different robustness enhancing strategies.
The result is based on ResNet-50. (IN: ImageNet)

Basic Advanced Incl. Eval dataset

ID- Comp.aug digital aug digital aug ImageNet-ES IN  IN-C  ImageNet-ES

1 v 858 51.0 49.6

2 v v 858 51.7 50.4 .

3 v v v 855 57.4 49.1 Including ImageNet-ES data for

4 v v 86.0 [ 51.8 55.8 : o

s Y y p es8 | 514 e finetuning |rr'1p.roves the robustness
6 v v v v 84.0 | 57.9 53.7 on both digitally or real-world

corrupted images.
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Experiments: Sensor parameter control

y 4 4
® |n practice, sensor parameter control is as important as obtaining

smart model.

Table 3. Evaluation of various models on ImageNet-ES. (IN: Ima-
geNet, AE: Auto exposure)

Num.  Pretraining ImageNet-ES
Model Params Dataset DG method IN AE  All params | Best
IN-1K - 86.3 32.2 50.2 80.1
ResNet-50 [8] 26M ) DeepAugment [13] .
IN-21K RV ITE S Rl \\Ve|l-tuned parameter setting (Best)
ResNet-152 [8] 60M IN-1K - 87.6 41.1 543 83.3 . < 4
Efficientnet-BO [32] M IN-1K - 88.1 51.4 58.1 83.8 Improves the predICthn accuracy
Efficientnet-B3 [32]  12M IN-1K - 88.3 62.0 66.2 86.8 M 99~47.9 (VS Auto Exposu re)
SwinV2-T [23] 28M IN-1K - 90.7 542 63.1 86.8 ~
SwinV2-B [23] 88M IN-1K ; 920 60.1 656 | 89.0 by 14.6 ~ 29.9 (vs All params)
OpenCLIP-b [17] 87M  LAION-2B  Text-guided pretrain  94.3  66.3 71.0 92.7
OpenCLIP-h [17] 632M  LAION-2B  Text-guided pretrain  94.7 79.1 77.6 94.7
DINOv2-b [26] 90M  LVD-142M Dataset curation 93.6 745 73.9 922
DINOv2-g [20] 1.1B  LVD-142M Dataset curation 947 843 79.6 94.2

Unexplored Faces of Robustness and Out-of-Distribution: Covariate Shifts in Environment and Sensor Domains
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Experiments: Sensor parameter control

y 4 4
® |n practice, sensor parameter control is as important as obtaining

smart model.

Table 3. Evaluation of various models on ImageNet-ES. (IN: Ima-
geNet, AE: Auto exposure)

Num.  Pretraining ImageNet-ES
Model Params Dataset DG method IN AE  All params Best
IN-1K - 863 32.2 50.2 80.1
ResNet-50 [8] M gk DeepAugmentlIS] o og 0 533 614 g4
+AugMix [12]
ResNet-152 [8] 60M IN-1K - 87.6 41.1 54.3 83.3
Efficientnet-B0 [32]  5M IN-1K - 88.1 514 581 [ 8338
Efficientnet-B3 [32] 1 INAIK - 8.0 66. 86.8 . .
SwinV2-T [23] 2 INMI K 120x larger model size 86.8 Even Efficientnet-BO with the best
SwinV2-B [23] ' WS 400x more training data : A outperforms OpenCLIP-h with auto
OpenCLIP-b [17] L 2B o RN 3 71.0 92.7 .
OpenCLIP-h[17]  632M  LAION-2B  Text-guided pretrain  94.7 | 79.1 77.6 94.7 exposure setting:

DINOvV2-b [26] 90M  LVD-142M Dataset curation 93.6 745 73.9 922
DINOv2-g [26] 1.1B LVD-142M Dataset curation 947 843 79.6 94.2
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Experiments: Sensor parameter control dBSI'

® (Qualitative analysis on ImageNet-ES

Light On Light Off
I 1
Worst Auto Exposure

Original Image Best Worst Auto Exposure
(86.3%) (79.0%) (4.5%) (34.4%) (6.2%) (30.0%)
TR TR r o4 N T ;‘:w‘

5 s s
i

Looks too bright on human eyes Looks okay to human eyes,
But model prefers them Not to the model

tra SNU Graduate School of Data Science
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Experiments: Sensor parameter control dgsl'

® (Qualitative analysis on ImageNet-ES

Light On Light Off
I T 1
Original Image Best Worst Auto Exposure Best Worst Auto Exposure
(86.3%) (79.0%) (4.5%) (34.4%) (78.5%) (6.2%) (30.0%)
: 0 ‘r" '.'.‘ V : o Q -':‘)«:i:& .»; '_ |
w:"’)‘ =
S\ N 4
/N p
F;';n.};} e Y

Sensor control should prioritize features based on model’s perspective,
rather than human intuition

Unexplored Faces of Robustness and Out-of-Distribution: Covariate Shifts in Environment and Sensor Domains @ SNU Graduate School of Data Science
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Conclusion & Future work (IST

V& 4
Investigated distribution shifts resulting from perturbations in Environmental and
Sensor domains.

ES-Studio: controllable testbed for environmental and sensor domains
ImageNet-ES: A novel covariate shifted dataset from the environment & sensor
domain

OOD detection: Limitation of semantics-centric framework => Need for new OOD
detection method to incorporate both S-OOD and C-OOD

Domain generalization: ES-augmentation improves the robustness in both
conventional and ImageNet-ES benchmarks.

Sensor parameter control

O With well-tuned sensor parameters, light model could perform comparably to heavier and
advanced model.
O Need of model-centric design instead of relying solely on human aesthetics.

Future work: Improve ES-Studio to take photos of real objects or printed photos,
rather than capturing display.
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Thank you:)
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